
SANDIA REPORT
SAND2009-3170
Unlimited Release
Printed June 2009

IceT Users’ Guide and Reference

Kenneth Moreland

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2009-3170
Unlimited Release
Printed June 2009

IceT Users’ Guide and Reference

Kenneth Moreland
Data Analysis and Visualization

Sandia National Laboratories
P.O. Box 5800 MS 1323

Albuquerque, NM 87185-1323
kmorel@sandia.gov

Abstract

The Image Composition Engine for Tiles (IceT) is a high-performance sort-last parallel rendering
library. In addition to providing accelerated rendering for a standard display, IceT provides the
unique ability to generate images for tiled displays. The overall resolution of the display may be
several times larger than any viewport that may be rendered by a single machine. This document
is an overview of the user interface to IceT.

3

Acknowledgement

I would like to thank Brian Wylie. It was his “big ideas” that got the ball rolling on the IceT
algorithms and library, and it was his continuing vision that pushed us on this path to parallel
rendering.

I would also like to thank the folks at Kitware, Inc. for adopting the IceT library as the parallel
rendering library for ParaView. They also maintain the IceT code repository. Without them, IceT
would probably be collecting dust on a crashed RAID somewhere.

4

Contents

1 Introduction 11

A Parallel Rendering Primer . 12

2 Tutorial 15

Building IceT . 15

Linking to IceT Libraries . 16

Creating IceT Enabled Applications . 17

3 Basic Usage 27

The State Machine . 27

Diagnostics . 30

Display Definition . 30

Strategies . 33

Drawing Callback . 34

Rendering . 36

4 Customizing Compositing 39

Compositing Operation . 39

Z-Buffer Compositing . 39

Volume Rendering (and Other Transparent Objects) . 40

Image Inflation . 43

Floating Viewport . 44

Active-Pixel Encoding . 45

5

Data Replication . 46

Timing (and Other Metrics) . 47

5 Strategies 49

Single Image Compositing . 49

Tree Compositing . 51

Binary-Swap Compositing . 52

Ordered Compositing . 54

Reduce Strategy . 54

Split Strategy . 56

Virtual Trees Strategy . 57

Serial Strategy . 57

Direct Send Strategy . 59

Implementing New Strategies . 60

Internal State Variables for Compositing . 61

Memory Management . 63

Image Manipulation Functions . 64

Creating Images . 64

Querying Images . 65

Rendering Images . 66

Compressing Images . 66

Communications . 67

Transferring Images . 69

Helper Communication Functions . 70

Internal Functions for Compositing . 71

Parallel Compositing . 71

6

Local Compositing . 74

6 Communicators 77

MPI Communicators . 77

User Defined Communicators . 78

7 Future Work 81

8 Man Pages 83

icetAddTile . 84

icetBoundingBox . 86

icetBoundingVertices . 88

icetCompositeOrder . 90

icetCopyState . 92

icetCreateContext . 94

icetCreateMPICommunicator . 96

icetDataReplicationGroup . 98

icetDataReplicationGroupColor . 100

icetDestroyContext . 102

icetDestroyMPICommunicator . 104

icetDiagnostics . 106

icetDrawFrame . 108

icetDrawFunc . 110

icetEnable . 112

icetGet . 114

icetGetColorBuffer . 119

icetGetContext . 121

7

icetGetError . 123

icetGetStrategyName . 125

icetInputOutputBuffers . 127

icetIsEnabled . 129

icetResetTiles . 131

icetSetContext . 133

icetStrategy . 135

icetWallTime . 137

Index 139

8

List of Figures

1.1 Parallel rendering classes. 12

2.1 CMake user interface. 16

3.1 Defining a tile display. 31

4.1 Floating viewport. 44

5.1 Example compositing problem. 50

5.2 Tree composite network. 51

5.3 Binary-swap composite network. 53

5.4 Reduce strategy composite network. 55

5.5 Split strategy composite network. 56

5.6 Virtual trees composite network. 58

5.7 Serial compositing network. 59

5.8 Direct send compositing network. 60

9

10

Chapter 1

Introduction

The Image Composition Engine for Tiles (IceT) is an API designed to enable OpenGL applications
to perform Sort-Last parallel rendering on very large displays. The displays are assumed to be tile
displays. The overall resolution of the display may be several times larger than any viewport
that may be rendered by a single machine. It is also assumed that several processes in the parallel
application are display processes. That is, their entire display window makes up part of the display.

The design philosophy behind IceT is to allow very large sets of polygons to be displayed
on very high resolution displays. As such, fast frame rates are sacrificed in lieu of very scalable
and very high polygon/second rendering rates. That said, there are many features in IceT that
allow an application to achieve interactive rates. These include image inflation, floating viewports,
active pixel encoding, and data replication. Together, these features make IceT a versatile parallel
rendering application that provides near optimal parallel rendering under most data size and image
size combinations. As an example, the ParaView application1 is using IceT for all of its parallel
rendering needs ranging from a desktop sized image to the world’s largest tile displays and from
polygon counts ranging from 1 to 1 million (and growing).

IceT is designed to take advantage of spatial decomposition of the geometry being rendered.
That is, it works best if all the geometry on each process is located in as small a region of space as
possible. When this is true, each process usually projects geometry on only a small section of the
screen. This results in less work for the compositing engine. This is of particular importance for
displays with a large number of pixels.

IceT can also be used to perform sort-last parallel rendering to a single display. Such single-
tile rendering is simply a special case of the multi-tile display IceT was designed for. Many of
the optimizations done by IceT apply to the single-tile mode. Using IceT for this purpose is quite
worthwhile. IceT’s performance should rival that of other such software image compositors.

The rest of this document describes the use of the IceT API. There are also separate manual
pages for each of the functions described here. For more details on IceT’s algorithms, see:

Kenneth Moreland, Brian Wylie, and Constantine Pavlakos. “Sort-last parallel ren-
dering for viewing extremely large data sets on tile displays,” In Proceedings of IEEE
Symposium on Parallel and Large-Data Visualization and Graphics, October 2001,

1http://www.paraview.org

11

http://www.paraview.org

Sorting N
etw

ork

R

R

R

R

Sort-First/Middle Rendering
Sorting N

etw
ork

R

R

R

R

Sort-Last Rendering

Figure 1.1. The differences between parallel rendering classes.
Sort-first and sort-middle algorithms transfer geometric data. Sort-
last algorithms transfer image data.

pp. 85–154.

A Parallel Rendering Primer

IceT requires you to know very little about parallel rendering and their algorithms. However, it is
helpful to know the basic idea behind IceT’s algorithms. This section gives a brief introduction to
how IceT renders in parallel.

Parallel rendering algorithms are classified as sort-first, sort-middle, or sort-last. The key dis-
tinguishing feature of each class is how primitives are distributed amongst processes. As demon-
strated in Figure 1.1, sort-first and sort-middle algorithms allocate screen space to processes and
send the appropriate geometry to each process every frame whereas sort-last algorithms render
static partitions of geometry in each process and then composite the resulting images to a single
image.2 IceT is a sort-last parallel rendering library.

A convenient feature of sort-last rendering is that an application needs to change very little
about how it renders geometry. The geometry is rendered the same in parallel as it is in serial; the
only difference is that each process only renders a subset of the geometry. The typical operation of
a parallel application using sort-last rendering is to simply render locally and then composite the
images.

When rendering to a tiled display, as IceT allows you to do, there is an added level of com-
plexity introduced because the graphics system is often not capable of rendering an image large
enough for the entire display. Thus, image compositing for a tiled display requires a loop that can

2In the interest of brevity and clarity, I am intentionally leaving out details that are unimportant to understanding
IceT such as hybrid algorithms and differences between sort-first and sort-middle algorithms.

12

iteratively render images for each tile and composite them. IceT handles this looping and inter-
faces with the rendering functions of your application through a callback mechanism. This will be
described in the following chapters.

13

14

Chapter 2

Tutorial

In this chapter we outline the steps required to create a simple IceT application from building
the IceT source, using the created libraries, and writing your own applications. IceT is solely
responsible for the image composition part of parallel rendering. Thus, it relies on two other APIs:
OpenGL for rendering and a communication layer for passing messages such as MPI, the Message
Passing Interface. Both have implementations in nearly every computer architecture.

This tutorial assumes the reader is familiar with OpenGL. If this is your first experience with
OpenGL programing, consider trying some typical serial rendering before jumping into the parallel
rendering domain. A familiarity with MPI is also helpful.

Building IceT

The IceT build process is very portable. It can be compiled on Microsoft Windows, Macintosh
OS X, and a wide variety of Unix implementations. IceT can be built on just about any platform
that has an OpenGL 1.1 compliant installation. Most modern operating systems come distributed
with OpenGL. For those that are not, you can usually use the Mesa 3D library (www.mesa3d.org),
a software implementation of OpenGL. An installation of MPI is also almost always needed, al-
though not strictly required. MPICH (http://www-unix.mcs.anl.gov/mpi/mpich2/) is a free and
widely portable implementation of MPI.

IceT uses CMake to build across so many different platforms. As such, you will have to
download the CMake build tools from www.cmake.org and install. Then, create a build directory
and run the CMake program (from the “Start” menu on Windows or ccmake on Unix and Mac OS
X). CMake will determine the parameters of your system and do its best to find libraries on which
IceT depends. The CMake program, shown in Figure 2.1 will also provide a GUI to allow you to
easily change build parameters and external libraries.

CMake will generate a set of build files for the local system. The type of files depends on the
type of machine you are using and the compile system you have chosen to use. On Unix machines,
make files are the most common. On Windows, you usually generate MSVC project files or nmake
files. On Mac OS X, either make files or Xcode project files are commonly generated based on
user selection. You then use the native build system to build and, optionally, install IceT.

15

file:www.mesa3d.org
http://www-unix.mcs.anl.gov/mpi/mpich2/
file:www.cmake.org

Figure 2.1. The CMake user interface. The Unix version is on
the left whereas the Microsoft Windows version is on the right.

Linking to IceT Libraries

IceT comes with three libraries: icet, icet strategies, and icet mpi. The actual filenames of these
libraries varies depending on the filesystem and build type. For example, on most Unix systems,
a static build results in filenames of libicet.a and the like whereas shared libraries are libicet.so.
Windows has libraries with names like icet.lib as well as icet.dll if building shared libraries. How-
ever, the difference in these filenames usually hidden by the build system, especially if you use a
portable build system like CMake.

You are, of course, free to use whatever build system you like, whether it be system specific
or cross platform. Using IceT is simply a matter of finding the header and library files. However,
because IceT is built with CMake, it comes with some extra facilities for helping other CMake
builds find it. This section will give you the bare minimum you need to set up CMake to build an
application using IceT. Readers interested more about CMake should pick up a copy of Mastering
CMake by Ken Martin and Bill Hoffman.

You define a build system with CMake by creating a CMakeLists.txt file. The CMakeLists.txt
file is basically a simple script that gives commands the CMake to tell it how to build your project.
Most CMakeLists.txt files start with the PROJECT command, which associates a name with your
project and optionally specifies a language.

PROJECT(IceT_Tutorial)

Distributed with the IceT source code is a file called FindIceT.cmake that provides all the
CMake facilities needed to find and use an IceT build. It works by finding a file called ICETCon-
fig.cmake, which is written when IceT is built and contains all the necessary build settings. The
FindIceT.cmake script can be invoked with the FIND PACKAGE command. After the IceT package
is found, a variable named ICET USE FILE is set to a file that may be INCLUDEd in your project to
point it to the directories containing the header and library files.

FIND_PACKAGE(IceT REQUIRED)

16

INCLUDE(${ICET_USE_FILE})

Any application using IceT will also be using OpenGL and almost all will be using MPI. In
addition, the example in the following section also uses GLUT for window management. CMake
comes with modules to find all three of these libraries, which makes it easy to include in our
project.

FIND_PACKAGE(OpenGL REQUIRED)
FIND_PACKAGE(GLUT REQUIRED)
FIND_PACKAGE(MPI REQUIRED)

MARK_AS_ADVANCED(CLEAR
MPI_INCLUDE_PATH
MPI_LIBRARY
MPI_EXTRA_LIBRARY
)

INCLUDE_DIRECTORIES(
${OPENGL_INCLUDE_DIR}
${MPI_INCLUDE_PATH}
${GLUT_INCLUDE_DIR}
)

The only think left to do is to tell CMake to build a program from a set of sources and libraries
specified with the ADD EXECUTABLE and TARGET LINK LIBRARIES commands, respectively.

ADD_EXECUTABLE(Tutorial Tutorial.c)
TARGET_LINK_LIBRARIES(Tutorial

${OPENGL_LIBRARIES}
${GLUT_LIBRARIES}
${MPI_LIBRARY}
${MPI_EXTRA_LIBRARY}
${ICET_CORE_LIBS}
${ICET_MPI_LIBS}
)

Creating IceT Enabled Applications

To use IceT, include it’s header: GL/ice-t.h. You will almost always need to also include the
header containing an MPI version of an IceT communicator: GL/ice-t mpi.h. On the rare oc-
casion that you need to use IceT with a communication layer other than MPI, you can define a
custom communicator as described in Chapter 6.

17

#include <GL/ice-t.h>
#include <GL/ice-t_mpi.h>

Before you call any IceT functions, you need to initialize MPI by calling MPI Init. You will
also need to create an OpenGL context (that is, open an OpenGL window). Do this by first creating
an IceT communicator from an MPI communicator and then using that to create an IceT context.

comm = icetCreateMPICommunicator(MPI_COMM_WORLD);
context = icetCreateContext(comm);

In the proceeding code, comm is of type IceTCommunicator and context is of type IceTContext.

Now that we have created and activated an IceT communicator, as well as initialized the IceT
state, we can start using IceT. It is often useful to first query IceT on the size of the parallel job it
is running in and what is the local process id, or rank. The values are stored in variables of type
GLint.

icetGetIntegerv(ICET_RANK, &rank);
icetGetIntegerv(ICET_NUM_PROCESSES, &num_proc);

In addition to an IceT context, you will also need an OpenGL context. In other words, you
need to make the rendering window in which the OpenGL rendering commands will go. The
process for doing this is greatly dependent on the windowing system and beyond the scope of this
document. It is usually easiest to use a third party API to do this. If you are not already using a
GUI tool that generates OpenGL windows for you, then the GLUT API is a popular choice for
simple applications.

Before rendering, we need to tell IceT the layout of the tile display using the icetReset-
Tiles and icetAddTile functions. These commands must be executed with the same argu-
ments on all processes of the parallel job. IceT will assume that you setup the same display layout
everywhere.

If you are not actually driving a tile display and instead just generating a desktop-sized image,
the following commands will correctly establish the IceT state.

icetResetTiles();
icetAddTile(0, 0, WINDOW_WIDTH, WINDOW_HEIGHT, 0);

The icetResetTiles function simply tells IceT that you are about to define a display
layout. Each call to icetAddTile defines a tile in the display. In the case of a single image,
the single-tile rendering mode, icetAddTile is called only once. The first two arguments to
icetAddTile have no effect in this mode. The third and fourth arguments are the width and

18

height of the image to create. Usually you set this to the width and the height of the display
window, but the Image Inflation section in Chapter 4 describes other usage for these parameters.
The final argument is the rank of the display process. After a rendering the final complete image
will available only on this process. In the example above, we have direct the image to go to process
zero, often referred to as the root process.

To define an actual tile display, simply call the icetAddTile function multiple times. When
describing tiles in a display, the first two arguments of icetAddTile describe where the lower
left corner of the tile is located in respect to the overall display. All together, the first four arguments
specify a viewport for the tile in an a single, cohesive high resolution display (which is what we
are trying to achieve with our tile display). The code below defines a 2×2 tile display with the top
two tiles displayed by processes 0 and 1 and the bottom two tiles displayed by processes 2 and 3.

icetResetTiles();
icetAddTile(0, WINDOW_HEIGHT, WINDOW_WIDTH, WINDOW_HEIGHT, 0);
icetAddTile(WINDOW_WIDTH,WINDOW_HEIGHT, WINDOW_WIDTH, WINDOW_HEIGHT, 1);
icetAddTile(0, 0, WINDOW_WIDTH, WINDOW_HEIGHT, 2);
icetAddTile(WINDOW_WIDTH,0, WINDOW_WIDTH, WINDOW_HEIGHT, 3);

IceT contains several strategies for image composition. Changing the strategy modifies the
algorithm IceT uses for parallel image compositing. You need to tell IceT which strategy to use
with the icetStrategy function. The code below sets IceT to use the reduce strategy, which
has proven to be an all-around good performer.

icetStrategy(ICET_STRATEGY_REDUCE);

Like with the display set up, all processes must set the same strategy.

IceT is almost ready to go. We just need to tell it some minimal information about how to
render your geometry. First, IceT needs to know the spatial extent of the geometry to be drawn (in
object space). The most natural way to do this is to use the icetBoundingBox function, which
defines an axis-aligned box defined by the minimum and maximum coordinates in each dimension.

icetBoundingBoxf(x_min, x_max, y_min, y_max, z_min, z_max);

The parameters can, and should be, different on each process, since each process will have a dif-
ferent partition of data. Strictly speaking, identifying the geometry bounds is not necessary. If they
are not defined, IceT will assume the geometry covers the entire screen. When rendering a single
small image, the information is of little consequence. However, when rendering larger images
this information can dramatically improve the performance of image composting. Specifying the
bounds can be critical on large tile displays.

The second and final piece of information IceT needs is a way to draw your geometry. IceT
achieves this through a drawing callback.

19

icetDrawFunc(drawScene);

The drawing callback is a pointer to any function that issues OpenGL commands that render ge-
ometry to the active frame buffer. The callback is free to issue most OpenGL so long as it restores
all the OpenGL state (except, of course, frame buffer contents). Also, the callback function should
modify neither the projection matrix nor the clear color. Care needs to be taken if the callback
modifies the model view matrix. More details are given in the Drawing Callback section of Chap-
ter 3.

IceT is now ready to render. Rendering is initiated with a call to icetDrawFrame. The
icetDrawFrame must be called on all processes. The function will render the scene using the
provided drawing callback, composite the image, and place the appropriate images in the back
OpenGL buffers of the appropriate display processes.

icetDrawFrame();

Parallel rendering is now enabled in your application. Simply call icetDrawFrame every
time you wish to draw a new image. The geometry rendered by your may change from frame
to frame so long as you ensure that you also update IceT with the bounds of your geometry if it
changes.

The following code is a full example of a simple IceT application. Do not be alarmed by the
length. The majority of the code is spent in setting up the supporting libraries (OpenGL, GLUT,
and MPI) and in comments.

/* -*- c -*- ***
** $Id: Tutorial.c 15215 2009-06-03 18:47:58Z kmorel $
**
** Copyright (C) 2007 Sandia Corporation
** Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
** license for use of this work by or on behalf of the U.S. Government.
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that this Notice and any statement
** of authorship are reproduced on all copies.
**
** This is a simple example of using the IceT library. It demonstrates the
** techniques described in the Tutorial chapter of the IceT User’s Guide.
***/

#include <stdlib.h>

/* IceT does not come with the facilities to create windows/OpenGL contexts.
* we will use glut for that. */
#ifndef __APPLE__
#include <GL/glut.h>

20

#include <GL/gl.h>
#else
#include <GLUT/glut.h>
#include <OpenGL/gl.h>
#endif

#include <GL/ice-t.h>
#include <GL/ice-t_mpi.h>

#define NUM_TILES_X 2
#define NUM_TILES_Y 2
#define TILE_WIDTH 300
#define TILE_HEIGHT 300

static void InitIceT();
static void DoFrame();
static void Draw();

static int winId;
static IceTContext icetContext;

int main(int argc, char **argv)
{

int rank, numProc;
IceTCommunicator icetComm;

/* Setup MPI. */
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numProc);

/* Setup a window and OpenGL context. Normally you would just place all the
* windows at 0, 0 (and probably full screen in tile display mode) to a local
* display, but since this is an example we are assuming that they are all
* going to one screen for display. */
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);
glutInitWindowPosition((rank%NUM_TILES_X)*(TILE_WIDTH+10),

(rank/NUM_TILES_Y)*(TILE_HEIGHT+50));
glutInitWindowSize(TILE_WIDTH, TILE_HEIGHT);
winId = glutCreateWindow("IceT Example");

/* Setup an IceT context. Since we are only creating one, this context will
* always be current. */
icetComm = icetCreateMPICommunicator(MPI_COMM_WORLD);
icetContext = icetCreateContext(icetComm);
icetDestroyMPICommunicator(icetComm);

21

glutDisplayFunc(InitIceT);
glutIdleFunc(DoFrame);

/* Glut will only draw in the main loop. This will simply call our idle
* callback which will in turn call icetDrawFrame. */
glutMainLoop();

return 0;
}

static void InitIceT()
{

GLint rank, num_proc;

/* We could get these directly from MPI, but it’s just as easy to get them
* from IceT. */
icetGetIntegerv(ICET_RANK, &rank);
icetGetIntegerv(ICET_NUM_PROCESSES, &num_proc);

/* We should be able to set any color we want, but we should do it BEFORE
* icetDrawFrame() is called, not in the callback drawing function.
* There may also be limitations on the background color when performing
* color blending. */
glClearColor(0.2f, 0.5f, 0.1f, 1.0f);

/* Give ICE-T a function that will issue the OpenGL drawing commands. */
icetDrawFunc(Draw);

/* Give ICE-T the bounds of the polygons that will be drawn. Note that
* we must take into account any transformation that happens within the
* draw function (but ICE-T will take care of any transformation that
* happens before icetDrawFrame). */
icetBoundingBoxf(-0.5f+rank, 0.5f+rank, -0.5, 0.5, -0.5, 0.5);

/* Set up the tiled display. Normally, the display will be fixed for a
* given installation, but since this is a demo, we give two specific
* examples. */
if (num_proc < 4)

{
/* Here is an example of a "1 tile" case. This is functionally
* identical to a traditional sort last algorithm. */
icetResetTiles();
icetAddTile(0, 0, TILE_WIDTH, TILE_HEIGHT, 0);
}

else
{

22

/* Here is an example of a 4x4 tile layout. The tiles are displayed
* with the following ranks:
*
* +---+---+
* | 0 | 1 |
* +---+---+
* | 2 | 3 |
* +---+---+
*
* Each tile is simply defined by grabing a viewport in an infinite
* global display screen. The global viewport projection is
* automatically set to the smallest region containing all tiles.
*
* This example also shows tiles abutted against each other.
* Mullions and overlaps can be implemented by simply shifting tiles
* on top of or away from each other.
*/
icetResetTiles();
icetAddTile(0, TILE_HEIGHT, TILE_WIDTH, TILE_HEIGHT, 0);
icetAddTile(TILE_WIDTH, TILE_HEIGHT, TILE_WIDTH, TILE_HEIGHT, 1);
icetAddTile(0, 0, TILE_WIDTH, TILE_HEIGHT, 2);
icetAddTile(TILE_WIDTH, 0, TILE_WIDTH, TILE_HEIGHT, 3);
}

/* Tell ICE-T what strategy to use. The REDUCE strategy is an all-around
* good performer. */
icetStrategy(ICET_STRATEGY_REDUCE);

/* Set up the projection matrix as you normally would. */
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-0.75, 0.75, -0.75, 0.75, -0.75, 0.75);

/* Other normal OpenGL setup. */
glEnable(GL_DEPTH_TEST);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
if (rank%8 != 0)

{
GLfloat color[4];
color[0] = (float)(rank%2);
color[1] = (float)((rank/2)%2);
color[2] = (float)((rank/4)%2);
color[3] = 1.0;
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, color);
}

}

23

static void DoFrame()
{

/* In this idle callback, we do a simple animation loop and then exit. */
static float angle = 0;

GLint rank, num_proc;

/* We could get these directly from MPI, but it’s just as easy to get them
* from IceT. */
icetGetIntegerv(ICET_RANK, &rank);
icetGetIntegerv(ICET_NUM_PROCESSES, &num_proc);

if (angle <= 360)
{
/* We can set up a modelview matrix here and ICE-T will factor this
* in determining the screen projection of the geometry. Note that
* there is further transformation in the draw function that ICE-T
* cannot take into account. That transformation is handled in the
* application by deforming the bounds before giving them to
* ICE-T. */
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(angle, 0.0, 1.0, 0.0);
glScalef(1.0f/num_proc, 1.0, 1.0);
glTranslatef(-(num_proc-1)/2.0f, 0.0, 0.0);

/* Instead of calling Draw() directly, call it indirectly through
* icetDrawFrame(). ICE-T will automatically handle image compositing. */
icetDrawFrame();

/* For obvious reasons, ICE-T should be run in double-buffered frame
* mode. After calling icetDrawFrame, the application should do a
* synchronize (a barrier is often about as good as you can do) and
* then a swap buffers. */
glutSwapBuffers();

angle += 1;
}

else
{
/* We are done with the animation. Bail out of the program here. Clean
* up IceT and the other libraries we used. */
icetDestroyContext(icetContext);

glutDestroyWindow(winId);

24

MPI_Finalize();

exit(0);
}

}

static void Draw()
{

GLint rank, num_proc;

/* We could get these directly from MPI, but it’s just as easy to get them
* from IceT. */
icetGetIntegerv(ICET_RANK, &rank);
icetGetIntegerv(ICET_NUM_PROCESSES, &num_proc);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/* When changing the modelview matric in the draw function, you must be
* wary of two things. First, make sure the modelview matrix is restored
* to what is was when the function is called. Remember, the draw
* function may be called multiple times and transformations may be
* commuted. Also, the bounds of the drawn geometry must be correctly
* transformed before given to ICE-T. ICE-T has no way of knowing about
* transformations done here. It is an error to change the projection
* matrix in the draw function. */
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glTranslatef((float)rank, 0, 0);
glutSolidSphere(0.5, 100, 100);
glPopMatrix();

}

25

26

Chapter 3

Basic Usage

In this chapter we describe in greater detail the basic features of IceT. The tutorial given in Chap-
ter 2 is a good place to start building your applications. You can then consult this chapter and later
ones for more details on the operations as well as descriptions of further features.

Prototypes for the majority of IceT types, functions, and identifiers can be found in the GL/ice-
t.h header file. You will also almost always need to include the header GL/ice-t mpi.h. Chap-
ter 6 provides more details on this latter header file’s function.

#include <GL/ice-t.h>
#include <GL/ice-t_mpi.h>

The State Machine

The IceT API borrows many concepts from OpenGL. One major concept taken is that of a state
machine. At all times IceT maintains a current state. The state can influence the operations that
IceT makes, and IceT’s operations can modify the state.

IceT can manage multiple collections of state at the same time. It does this by associating each
state with a context. At any given time, there is at most one active context. Any IceT function
called works using the current active context.

Contexts are created and destroyed with icetCreateContext and icetDestroyCon-
text, respectively.

IceTContext icetCreateContext(IceTCommunicator comm);

void icetDestroyContext(IceTContext context ;

These functions work with an object of type IceTContext. IceTContext is an opaque
type; you are not meant to directly access it. Instead, you pass the object to functions to do the
work for you.

The icetCreateContext function requires an object of type IceTCommunicator.
This is another opaque type that is described in more detail in Chapter 6. For now, just know

27

that you can create one from an MPI communicator using the icetCreateMPICommunica-
tor function.

IceTCommunicator icetCreateMPICommunicator(
MPI Comm mpi comm);

void icetDestroyMPICommunicator(IceTCommunicator comm);

The following code gives the common boilerplate for setting up your initial IceT context.

#include <GL/ice-t.h>
#include <GL/ice-t_mpi.h>

int main(int argc, char **argv)
{

IceTCommunicator icetComm;
IceTContext icetContext;

/* Setup MPI. */
MPI_Init(&argc, &argv);

/* Setup an IceT context. If we are only creating one, this context will
* always be current. */
icetComm = icetCreateMPICommunicator(MPI_COMM_WORLD);
icetContext = icetCreateContext(icetComm);
icetDestroyMPICommunicator(icetComm);

/* Start your parallel rendering program here. */

/* Cleanup IceT and MPI. */
icetDestroyContext(icetContext);
MPI_Finalize();

return 0;
}

Any number of contexts may be created, each with its own associated state. At any given time,
a single given context is current. All IceT operations are applied with the state attached to the
current context. A handle to the current IceT context can be retrieved with the icetGetContext
function, and he current context can be changed by using the icetSetContext function.

IceTContext icetGetContext(void);

void icetSetContext(IceTContext context);

Changing the context is a fast and easy way to swap states. This could be used, for example,
to switch between rendering modes. One context could be used for a full resolution image, and

28

another could use image inflation (described in Chapter 4) to make faster but coarser images
during interaction.

When a context is created, its state is initialized to default values. You can effectively “du-
plicate” a context by copying the state of one context to another using the icetCopyState
function.

void icetCopyState(IceTContext dest,
IceTContext src);

The state of a context comprises a group of key/value pairs. The state can be queried by using
any of the icetGet functions.

void icetGetDoublev (GLenum pname,
GLdouble * params);

void icetGetFloatv (GLenum pname,
GLfloat * params);

void icetGetIntegerv (GLenum pname,
GLint * params);

void icetGetBooleanv (GLenum pname,
GLboolean * params);

void icetGetPointerv (GLenum pname,
GLvoid ** params);

The valid keys that can be used in the icetGet functions are listed in the icetGet docu-
mentation starting on page 114. There is no way to directly set these state variables. Instead, they
are set either by IceT configuration functions or indirectly as part of the operation of IceT. The
documentation for icetGet also describes which functions can be used to set each state entry
(assuming the user has control of that state entry).

There is a special set of state entries that toggle IceT options. Although you can query this
state with the icetGetBooleanv function, it is more typical to use the icetIsEnabled
function. Also unlike the other state variables, these variables can be directly manipulated with the
icetEnable and icetDisable functions.

GLboolean icetIsEnabled(GLenum pname);

void icetEnable (GLenum pname);

void icetDisable (GLenum pname);

The options queried with icetIsEnabled and manipulated with icetEnable and
icetDisable are listed in the icetEnable documentation starting on page 112.

29

Diagnostics

The IceT library has a mechanism for reporting diagnostics. There are three levels of diagnostics.
Errors are anomalous conditions that IceT considers a critical failure. An occurrence of an error
generally means that the future IceT operations will have undefined behavior. When IceT is com-
piled in debug mode, a seg fault is intentionally raised when an error occurs to make it easier to
attach a debugger to the point where the error occurred.

Warnings are detections of anomalous conditions that are not as severe as errors. When a
warning occurs, the current operation may produce the incorrect results, but future operations
should continue to work.

IceT also can also provide a large volume of debug messages. These messages simply indicate
the status of IceT operations as they progress. They are generally of no use to anyone who is not
trying to develop or debug IceT operations.

IceT diagnostics are controlled with the icetDiagnostics function.

void icetDiagnostics(GLbitfield mask);

The icetDiagnostics function takes a set of flags that can me or-ed together. The diag-
nostics for errors, warnings, and debug statements can be set by passing the ICET DIAG ERRORS,
ICET DIAG WARNINGS, and ICET DIAG DEBUG flags, respectively. Turning on warnings im-
plicitly turns on errors and turning on debug statements implicitly turns on errors and warnings
(although there is no problem with redundantly specifying these flags).

IceT has the ability to report diagnostics either on all processes or only on the root process (the
process with rank 0). This behavior is controlled by the ICET DIAG ROOT NODE and ICET -
DIAG ALL NODES flags. Many diagnostic messages occur on all nodes when they occur, so
reporting only on node 0 can greatly reduce the number of messages with which to contend. How-
ever, messages can differ between processes or may not occur on all processes.

The special flags ICET DIAG FULL and ICET DIAG OFF turn all possible diagnostics on
and all diagnostics completely off, respectively.

By default, IceT displays errors and warnings on all nodes. You can get the current diagnostic
level by calling icetGet with ICET DIAGNOSTIC LEVEL.

Display Definition

IceT assumes that the tiled display it is driving has each tile connected to the graphics output of one
of the processes in the parallel job in which it is running. This type of arrangement is natural for
any tiled display driven by a graphics cluster, and is the delivery method of many graphics APIs.

30

1280x1024
(0,0)

1280x1024
(2560,0)

1280x1024
(1280,0)

1280x1024
(0,1024)

1280x1024
(2560,1024)

1280x1024
(1280,1024)

1280x1024
(0,2048)

1280x1024
(2560,2048)

1280x1024
(1280,2048)

1280x1024
(0,0)

1280x1024
(2760,0)

1280x1024
(1380,0)

1280x1024
(0,1124)

1280x1024
(2760,1124)

1280x1024
(1380,1124)

1280x1024
(0,2248)

1280x1024
(2760,2248)

1280x1024
(1380,2248)

1280x1024
(0,1024)

1280x1024
(2760,0)

1280x1024
(1024,0)

1280x1024
(-256,-500)

1280x1024
(768,2048)

768x768
(0,2248) 1600x1200

(2440,1800)

1280x1024
(1380,2248)

Figure 3.1. Defining a tile display with viewports in a logical
global display. Three possible tile arrangements are shown. The
bounds of each tile is drawn with the viewport given inside. The
viewable area is shown with a dashed line.

IceT defines the configuration of a tiled display by using a logical global display with an
infinite 1 number of pixels in both the horizontal and vertical directions. The definition of each
tile comprises the identifier for the process connected to the physical projection and the viewport
(position and size) of the tile in the global display. IceT implicitly defines the rectangle that tightly
encompasses all of the tile viewports as the viewable area and snaps the viewing region (defined
by the OpenGL viewing matrices) to this area.

Figure 3.1 shows some possible tile arrangements. Mullions or overlaps of the tiles in the
physical display can be represented by the spacing or overlap of the viewports in the logical display.
IceT does not require the tile layout to have any regularity. Chaotic layouts like that shown in the
right image of Figure 3.1 are legal, although probably not very useful. It is allowed, and in fact
encouraged, to have processes that are not directly connected to the tiled display. These non-
display processes still contribute to the image compositing work and will reduce the overall time
to render an image.

The display is defined using the icetResetTiles and icetAddTile functions. Any
previous tile definition is first cleared out using icetResetTiles and new tiles are added, one
at a time, using icetAddTile.

void icetResetTiles(void)

int icetAddTile(GLint x,
GLint y,
GLsizei width,
GLsizei height,
int display rank);

Each tile is specified using screen coordinates in the logical global display: the position of the

1Well, OK. The logical global display only stretches as far as the 32-bit numbers that are used to define viewports.
But that’s still way bigger than any physical display that we can possibly conceive, so conceptually we call it infinite.

31

lower left corner and the width and height of the tile. Each tile also has a display process associated
with it. After an image is completely rendered and composited, the screen section belonging to
this tile will be placed in the process at the given rank.

The following code demonstrates a common example for establishing the tile layout: a grid of
projectors. The arrangement of projectors in this example assume that the projectors are connected
to processes in the order of left to right and then top to bottom, which is common. Note, however,
that IceT defines its logical global display with y values from the bottom up like OpenGL does.

icetResetTiles();
for (row = 0; row < num_tile_rows; row++) {

for (column = 0; column < num_tile_columns; column++) {
icetAddTile(column*TILE_WIDTH, (num_tile_rows-row-1)*TILE_HEIGHT,

TILE_WIDTH, TILE_HEIGHT,
row*num_tile_columns + column);

}
}

Mullions are added by simply spacing the tiles apart from each other in the logical global
display. Because they are defined in the logical global display, physical dimensions of the mullions
must first be converted to pixels using the dot pitch of the displays. The following code adds
mullions between all of the tiles.

icetResetTiles();
for (row = 0; row < num_tile_rows; row++) {

for (column = 0; column < num_tile_columns; column++) {
icetAddTile(column*(TILE_WIDTH + x_mullion),

(num_tile_rows-row-1)*(TILE_HEIGHT + y_mullion),
TILE_WIDTH, TILE_HEIGHT,
row*num_tile_columns + column);

}
}

An equally common use for IceT is to render images in parallel to a single display. In this
single-tile rendering mode, we simply create a single tile whose image will be placed in the GUI
of some application. This is done by either using the OpenGL context of the GUI as part of the
IceT rendering process or by grabbing the image of the single tile and copying into the GUI. The
example code below sets up IceT to create a single image that is accessible on the root process.

icetResetTiles();
icetAddTile(0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0);

IceT indexes the tiles in the order that they are defined with icetAddTile. You can get
the current definition of the tile display from a number of state variables, which can be retrieved

32

as always with icetGet. ICET NUM TILES stores the number of tiles that are defined (the
number of times icetAddTile was called). ICET TILE VIEWPORTS stores an array with all
of the dimensions of each tile. For each tile, ICET TILE VIEWPORTS contains the four values
〈x,y,width,height〉, stored consecutively, corresponding to the values passed to icetAddTile.
ICET DISPLAY NODES stores an array giving the rank of the display process displaying that tile.
Each process can also query the ICET TILE DISPLAYED variable to see which tile is displayed
locally. ICET TILE DISPLAYED is set to −1 on every process that does not display a tile.

You can get information about the display geometry as a whole through ICET GLOBAL -
VIEWPORT. This variable stores the four-tuple 〈x,y,width,height〉. x and y are placed at the left-
most and lowest position of all the tiles, and width and height are just big enough for the viewport
to cover all tiles.

Calling icetAddTile will not create a display context for the tile. That responsibility is left
to the calling application. IceT will use whatever OpenGL context is current. When using IceT
in single-tile rendering mode, the OpenGL context should simply be set to the image size. When
driving a physical tile display, each display process must create a window that covers the entire
display. It is also a good idea to disable the mouse cursor in these windows.

Note that the size of the tiles do not have to match each other. Also, the size of the OpenGL
viewport does not have to match the size of any of the tiles. There is, however, a constraint that the
OpenGL viewport on all processes must be at least as large as the largest tile in each dimension.
To help you maintain that constraint, IceT stores the largest tile dimensions in the ICET TILE -
MAX WIDTH and ICET TILE MAX HEIGHT state variables. The overall maximum tile size is
provided in ICET TILE MAX PIXELS so that you can allocate buffers big enough for any tile
image.

Although counterintuitive, it is often more efficient to create OpenGL viewports that are larger
than any tile. This situation may be necessary when using image inflation (see Chapter 4). Even
when not using image inflation, larger rendering viewports can save a significant amount of render-
ing time. IceT can use the larger OpenGL image buffer to potentially render in one shot an object
that is larger than any of the tiles.

Strategies

IceT contains several algorithms for performing image compositing. The overall algorithm used
to render and composite an image is called a strategy, named after the “Gang of Four” strategy
pattern.2 The strategy is set using the icetStrategy function.

void icetStrategy(IceTStrategy strategy);

IceT defines the following strategies that can be passed to icetStrategy. These strategies

2Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison-Wesley, 1994. ISBN
0-201-63361-2.

33

are discussed in more detail in Chapter 5.

ICET STRATEGY REDUCE A two phase algorithm. In the first phase, tile images are redis-
tributed such that each process has one image for one tile. In the second phase, a ‘traditional’
single tile composition is performed for each tile. Since each process contains an image for
only one tile, all these compositions may happen simultaneously. This is a well rounded
strategy that seems to perform well in a wide variety of applications.

ICET STRATEGY SPLIT Each tile is split up, and each process is assigned a piece of a tile in
such a way that each process receives and handles about the same amount of data. This
strategy is often very efficient, but due to the large amount of messages passed, it has not
proven to be very scalable or robust.

ICET STRATEGY VTREE An extension to the binary tree algorithm for image composition. Sets
up a “virtual” composition tree for each tile image. Processes that belong to multiple trees
(because they render to more than one tile) are allowed to float between trees. This strategy
is not quite as well load balanced as ICET STRATEGY REDUCE or ICET STRATEGY -
SPLIT, but has very well behaved network communication.

ICET STRATEGY SERIAL Basically applies a “traditional” single tile composition (such as bi-
nary swap) to each tile in the order they were defined. Because each process must take part
in the composition of each tile regardless of whether they draw into it, this strategy is usually
very inefficient when compositing for more than tile. It is provided mostly for comparative
purposes.

ICET STRATEGY DIRECT As each process renders an image for a tile, that image is sent di-
rectly to the process that will display that tile. This usually results in a few processes receiv-
ing and processing the majority of the data, and is therefore usually an inefficient strategy.

Drawing Callback

Most compositing engines will simply take a group of images and combine them together. This
approach, however, is unreasonable when compositing the high resolution images on a large tiled
display. It is problematic for an application to create images larger than any color buffer the
rendering hardware can create, and holding many of these large images can lead to a large memory
profile.

Instead, the IceT algorithms deal with pieces of the overall image. The image pieces are created
on demand. As such, IceT may require the same geometry to be rendered multiple times in a single
frame. IceT provides the application with the most flexible way to define the rendering process:
with a drawing callback.

A drawing callback is simply a function that your application provides IceT. When IceT needs
an image, it will establish the appropriate OpenGL transformation matrices for the section of the

34

overall display it needs. The application’s drawing callback will issue the appropriate OpenGL
commands to draw the geometry. The drawing callback leaves its image in the OpenGL buffers
upon exiting.

The drawing callback is set with the icetDrawFunc.

typedef void (*IceTCallback)(void);

void icetDrawFunc(IceTCallback func);

IceT can nominally call the drawing callback for every tile in the display. However, in almost
any real application each process has data that demonstrates some spatial locality that causes it to
be projected on a relatively small section of the display. To give IceT the information it needs to
prevent unnecessary renders, the application needs to provide the bounds of the local geometry.
This is done using either the icetBoundingVertices or the icetBoundingBox function.

void icetBoundingVertices(GLint size,
GLenum type,
GLsizei stride,
GLsizei count,
const GLvoid * pointer);

void icetBoundingBoxd (GLdouble x min,
GLdouble x max,
GLdouble y min,
GLdouble y max,
GLdouble z min,
GLdouble z max);

void icetBoundingBoxf (GLfloat x min,
GLfloat x max,
GLfloat y min,
GLfloat y max,
GLfloat z min,
GLfloat z max);

With the icetBoundingVertices function, you specify a set of vertices whose convex
hull completely contains the geometry. The icetBoundingBox function is a convenience func-
tion that defines the container as an axis aligned bounding box.

The drawing callback should not modify the GL PROJECTION MATRIX as this would cause
IceT to place image data in the wrong location in the tiled display and improperly cull geome-
try. It is acceptable to add transformations to GL MODELVIEW MATRIX, but the bounding ver-
tices given with icetBoundingVertices or icetBoundingBox are assumed to already be
transformed by any such changes to the modelview matrix. Also, GL MODELVIEW MATRIX must
be restored before the draw function returns. Therefore, any changes to GL MODELVIEW MATRIX
are to be done with care and should be surrounded by a pair of glPushMatrix and glPopMatrix

35

functions.

It is also important that the drawing callback not attempt the change the clear color. In some
compositing modes, IceT needs to read, modify, and change the background color. These opera-
tions will be lost if the drawing callback changes the background color, and severe color blending
artifacts may result.

IceT may call the drawing callback several times to create a single tiled image or not at all
if the current bounds lie outside the current view frustum. This can have a subtle but important
impact on the behavior of the drawing callback. For example, counting frames by incrementing a
frame counter in the drawing callback is obviously wrong (although you could count how many
times a render occurs). The drawing callback should also leave OpenGL in a state such that it
will be correct for a subsequent run of the drawing callback. Any matrices or attributes pushed in
the drawing callback should be popped before the drawing callback returns, and any state that is
assumed to be true on entrance to the drawing callback should also be true on return.

Rendering

Once you have set up the IceT state as described in the previous sections of this chapter, you are
ready to perform parallel rendering. Parallel rendering is performed by calling icetDrawFrame.

void icetDrawFrame(void);

icetDrawFrame is called in basically the same way as the drawing callback would be called
directly. First, establish the OpenGL state. Setting up the GL PROJECTION MATRIX before
calling icetDrawFrame is essential. It is also advisable to set up whatever transformations in
the GL MODELVIEW MATRIX that you can before calling icetDrawFrame. IceT will use and
modify these two matrices to render regions of the tiled display. The drawing callback should
behave as if neither of the matrices were modified.

By the time icetDrawFrame completes, an image will have been completely rendered and
composited. If ICET DISPLAY is enabled, then the fully composited image is written back to the
OpenGL framebuffer for display. It is the application’s responsibility to synchronize the processes
and swap front and back buffers. The image remaining in the frame buffer is undefined if ICET -
DISPLAY is disabled or the process is not displaying a tile.

If the OpenGL background color is set to something other than black, ICET DISPLAY COL-
ORED BACKGROUND should also be enabled. Displaying with ICET DISPLAY COLORED -
BACKGROUND disabled may be slightly faster (depending on graphics hardware) but can result in
black rectangles in the background.

If ICET DISPLAY INFLATE is enabled and the size of the renderable window (determined
by the current OpenGL viewport) is greater than that of the tile being displayed, then the image
will first be “inflated” to the size of the actual display. If ICET DISPLAY INFLATE is disabled,

36

the image is drawn at its original resolution at the lower left corner of the display. More details on
image inflation are given in Chapter 4.

Regardless of whether it writes the fully composited image back to the display, IceT stores the
resulting image buffers. These image buffers can be retrieved with the icetGetColorBuffer
and icetGetDepthBuffer functions.

GLubyte *icetGetColorBuffer (void);
GLuint *icetGetDepthBuffer (void);

Of course, color buffers are only available on display processes. Also be aware that a color or
depth buffer may not have been computed with the last call to icetDrawFrame. IceT avoids
the computation and network transfers for any unnecessary buffers unless specifically requested
otherwise with the flags given to the icetInputOutputBuffers function.

void icetInputOutputBuffers(GLenum inputs,
GLenum outputs);

icetInputOutputBuffers allows you to specify which OpenGL buffers to composite
(the input buffers) and which to deliver to the display processes (the output buffers). The
color and depth buffers are specified with the ICET COLOR BUFFER BIT and ICET DEPTH -
BUFFER BIT, respectively. By default, IceT reads in both the color and depth buffers, performs
compositing using Z comparison, and delivers just the color buffer to the display nodes. If you
need the depth buffer as well, specify depth as one of the outputs. If you do not need the color
buffer, you can remove the color buffer as one of the input buffers. If the depth buffer is not
specified as one of the inputs, then the compositing mode is automatically switched to alpha
blending. However, alpha blending requires additional information from the application, which is
discussed in Chapter 4.

In any case, you can query whether a color or depth buffer is available with ICET COLOR -
BUFFER VALID or ICET DEPTH BUFFER VALID, respectively. It is an error to read an invalid
buffer.

The memory returned by icetGetColorBuffer and icetGetDepthBuffer need not,
and should not, be freed. It will be reclaimed in the next call to icetDrawFrame. Expect the
data returned to be obliterated on the next call to icetDrawFrame.

37

38

Chapter 4

Customizing Compositing

If you have been reading this document from the beginning, then you already know enough to use
IceT for many typical rendering applications. Chapters 2 and 3 describe how to build and link
IceT, establish an IceT context in your application, and to leverage IceT to make your rendering
parallel. This chapter describes the many features IceT provides to let you customize the image
compositing to your application.

Compositing Operation

IceT is classified as a sort-last type of parallel rendering library, as discussed in Chapter 1. Ba-
sically, this means that each process renders images independently, and then these images, each
comprising a different partition of the geometry, are combined together in a process called com-
positing.

To combine two images together, a compositing operation is applied to every corresponding
pair of pixels. Three or more images are combined by applying the compositing operation multiple
times to eventually reduce everything to one image. (The compositing operations supported by
IceT are associative, so order does not matter. IceT takes advantage of this fact to efficiently
perform the compositing in parallel.)

IceT supports two compositing operations. The first type of compositing operation is a depth
comparison and the other is an alpha blend. The depth comparison is a bit faster and is easier to
use, but only works for opaque surfaces. If you are performing volume rendering, the translucent
rendering of 3-dimensional volumes, or any other rendering that involves transparent data, then
you will have to use the alpha blend compositing operation.

Z-BUFFER COMPOSITING

Z-buffer compositing takes advantage of the same hidden surface removal already taking place
in the OpenGL pipeline. IceT pulls the z-buffer (also often known as the depth buffer) from the
OpenGL image buffers. The compositing operation then just compares the depth values of two
pixels and chooses the one that is closer.

39

Z-buffer compositing is used whenever the depth buffer is chosen as one of the input buffers.
The input (and output) buffers are chosen with the icetInputOutputBuffers function.

void icetInputOutputBuffers(GLenum inputs,
GLenum outputs);

By default, both the the color and the depth buffer are selected as input buffers and the color
buffer is selected as the only output buffer. This means that the depth buffer will be used to do
z-buffer compositing, but only the color buffer will be fully composited. (Not computing the depth
buffer may save some network transfer time.)

If you need the depth buffer composited in addition to the color buffer (for example, to help
with a picking operation), you can do so by simply setting the depth buffer as one of the output
buffers.

icetInputOutputBuffers(ICET_COLOR_BUFFER_BIT | ICET_DEPTH_BUFFER_BIT,
ICET_COLOR_BUFFER_BIT | ICET_DEPTH_BUFFER_BIT);

Alternatively, if you only need the depth buffer (for example, as a shadow map), you can do so by
setting both the input and output buffers to just the depth buffer.

icetInputOutputBuffers(ICET_DEPTH_BUFFER_BIT, ICET_DEPTH_BUFFER_BIT);

VOLUME RENDERING (AND OTHER TRANSPARENT OBJECTS)

A well known limitation to z-buffer compositing — and the z-buffer hidden surface removal algo-
rithm in general — is that it only works with opaque objects. You will get invalid results if you try
to apply z-buffer compositing on transparent objects.

There are two fundamental problems with the z-buffer compositing operation when dealing
with translucent pixels. The first problem is that you cannot simply pick the nearest color value.
You must blend the front pixel’s color with the back pixel’s color. The second problem is that
the color blending is order dependent. That is, you have to know which pixels are in front of
others. Although it is technically possible to use z-buffer values to determine the ordering of a pair
of pixels, making sure that all the pixels get composited in the correct order requires additional
information about and constraints on the geometry.

When z-buffer compositing is not applicable, you must use blended compositing. Blended
compositing is automatically turned on when there is no z-buffer specified as an input buffer. That
generally means you will be setting both the input and output buffers to the color buffer.

icetInputOutputBuffers(ICET_COLOR_BUFFER_BIT, ICET_COLOR_BUFFER_BIT);

40

The blending composite operator relies on the alpha (α) channel of the color buffer (the A in
RGBA colors). Note that the alpha values must actually be available in the OpenGL color buffers
in order for blended compositing to work. Many applications create OpenGL buffers without alpha
bit planes in them because they are often not necessary to render images in serial. Make sure your
application creates alpha bit planes before attempting to composite translucent images with IceT
(or any other library).

The blending operation is the standard over/under operator defined in the seminal 1984 Porter
and Duff paper.

Co←C f +Cb(1−α f) (4.1)

where C is an RGBA color vector, α is the alpha component of a color vector, and the f , b, and o
subscripts denote the front, back, and output values, respectively.

Each color in Equation 4.1 represents a pre-multiplied color, meaning that the red, green,
and blue values are scaled by the alpha parameter. Thus, a fully red color at half transparency
is represented by the vector 〈0.5,0,0,0.5〉 rather than 〈1,0,0,0.5〉. In pre-multiplied colors, none
of the red, green, or blue values ever exceed the alpha value. Note that colors are often provided
in OpenGL as non-pre-multiplied values, and the blending equation Co ← C f α f +Cb(1−α f) is
used instead of the one in Equation 4.1. Although this blending gives the correct RGB color, it
computes an invalid alpha parameter, so watch out!

Simply turning on blended compositing is not sufficient to render translucent objects. You
must also tell IceT to perform ordered compositing. In ordered compositing, you must have a
visibility ordering. Given any two processes, a visibility ordering ensures and determines that all
of the geometry in one process is in front of or behind all the geometry in each of the other process
with respect to the camera. In some cases, such as when volume rendering a 3D Cartesian grid of
points distributed in blocks to processes, finding the visibility ordering is straightforward. In other
cases, such as when rendering unstructured collections of polygons or polyhedra, it can be difficult
to ensure that a visibility ordering exists and can be found. Doing so may be the most challenging
part of creating a parallel rendering application. An example of creating a visibility ordering from
unstructured data can be found in the ParaView application, and the implementation is detailed in
the following paper:

Kenneth Moreland, Lisa Avila, and Lee Ann Fisk. “Parallel Unstructured Volume
Rendering in ParaView,” In Visualization and Data Analysis 2007, Proceedings of
SPIE-IS&T Electronic Imaging, January 2007, pp. 64950F-1–12.

Ordered compositing is turned on by simply passing the ICET ORDERED COMPOSITE flag
to icetEnable.

icetEnable(ICET_ORDERED_COMPOSITE);

41

Once ordered compositing is enabled, it is very important to use icetCompositeOrder to
specify the visibility order of the geometry associated with each process. This must generally be
done before each call to icetDrawFrame.

void icetCompositeOrder(const GLint * process ranks);

The icetCompositeOrder function takes an array of processes. It is assumed that the
geometry of the first process in the list is in front of the rest of the processes; the geometry of the
second process in the list is in front of all the processes except the first, and so on. The visibility
order often changes when the camera angle changes, so it is important to recompute and report a
new composite order on every frame.

Be aware that not all strategies support ordered compositing. If the current strategy does not
support ordered compositing, then the ICET ORDERED COMPOSITE flag is ignored. Consult the
documentation in Chapter 5 or the documentation for the icetStrategy command to determine
which strategies support ordered compositing. In any case, you can check the ICET STRATEGY -
SUPPORTS ORDERING state variable to determine if the current compositing strategy supports
ordered compositing.

One final thing to worry about when using blended compositing is to make sure that the back-
ground color does not interfere with the compositing. Because the visibility order is important, you
need to make sure that none of the processes render with a background (except perhaps the process
nearest the rear). For example, let us say you want to render an image with a blue background. Let
us also say that process A’s geometry is in front of process B’s geometry. Process A cannot render
its geometry on top of a blue background because that background should really also be behind the
geometry of process B, and the resulting image will be invalid.

If your background is a solid color, then IceT can fix this problem automatically. Simply set
the OpenGL background (clear) color like you normally would and enable the ICET CORRECT -
COLORED BACKGROUND feature.

glClearColor(0.0, 0.0, 1.0, 1.0);
icetEnable(ICET_CORRECT_COLORED_BACKGROUND)

When the ICET CORRECT COLORED BACKGROUND feature is enabled and blended com-
positing is on, IceT will change the background to 〈0,0,0,0〉, perform the rendering and com-
positing, blend the result into the specified background color, and finally restore the OpenGL clear
color.

If you do not actually need to get the image result back from icetGetColorBuffer, you
can use the ICET DISPLAY COLORED BACKGROUND.

glClearColor(0.0, 0.0, 1.0, 1.0);
icetEnable(ICET_CORRECT_COLORED_BACKGROUND)

42

ICET DISPLAY COLORED BACKGROUND operates similar to ICET CORRECT COL-
ORED BACKGROUND with the exception that it uses the OpenGL graphics hardware to blend the
composited image to the colored background, and may therefore get a modest performance in-
crease. However, it also means that the result will not be available in the memory buffer returned
by icetGetColorBuffer.

Image Inflation

Because IceT is an image-based sort-last parallel rendering library, its overhead is proportional
to the size of the images being generated. Thus, large displays can limit the maximum rendering
frame rate that can be achieved.

A simple way to increase the frame rate is to reduce the resolution of the images being dis-
played. If the display resolution is larger than necessary (and “larger than necessary” is a flexible
metric that can change regularly as an application runs), then you can tell IceT to render smaller
images and then inflate the images to fill the display. A major use case for a reduced resolution
image is for maintaining application interactivity. Many applications, particularly visualization ap-
plications, contain bursts of interactivity. The user will interact with the data (move the camera or
objects) and then hold still and analyse the results. While interacting, application responsiveness
is much more important than image details, so during this time a lower resolution image can be
rendered and inflated. When the user stops interacting and starts analysing, a full resolution image
can be created.

You can instruct IceT to render and composite smaller images by simply specifying a lower
resolution display with the icetAddTile function. If you are frequently switching the resolution
of the images being generated (which is common), then you can use IceT state management to
switch states. First, use icetCreateContext and icetCopyState to create a duplicate
state. Then change the display of one of the states to a lower resolution with icetAddTile.
As the application runs, use icetSetContext to swap between the different resolutions. See
Chapter 3 for details on using these functions.

Between rendering and display, the smaller images must be inflated to fill the display. An
application can always perform this inflation itself (and that is probably necessary if the images
are shipped to a remote display). When IceT is displaying the data (i.e. ICET DISPLAY is en-
abled), IceT has the ability to automatically inflate the images. Turn on this feature by enabling
ICET DISPLAY INFLATE. IceT contains two modes for inflating images: using the CPU or
using texture mapping in OpenGL. When ICET DISPLAY INFLATE WITH HARDWARE is en-
abled (the default), then texture mapping is used. In either case, icetGetColorBuffer and
icetGetDepthBuffer return the smaller image size specified by icetAddTile.

One final note: Regardless of what size you set for the displays in icetAddTile, you should
keep the viewport (specified by glViewport) as large as possible. The size of the graphics
viewport and the size of the tile images can be different so long as each viewport is at least as large

43

Figure 4.1. Even though geometry may straddle tile boundaries,
we may be able to render it all in one pass by “floating” the view-
port.

as the largest tile image. In fact, it is advantageous to have the viewport larger than the specified
tiles. The first reason is that the ICET DISPLAY INFLATE feature fills the image to the OpenGL
viewport. If the dimensions the two are the same, then no inflation will actually take place. The
second reason is that IceT will use the entire OpenGL viewport for rendering. For a multi-tile
display, this can dramatically reduce the number of times the render callback needs to be called.
Thus, in general it is best to keep the OpenGL viewport as large as possible.

Floating Viewport

Consider the geometry shown in Figure 4.1 that projects onto a screen space that fits within a
single tile but is moved in the horizontal and vertical directions so that it straddles four tiles. If the
system limits itself to projecting onto physical tiles, the processor must render and read back four
images; although it could generate a single image that contains the entire geometry with the exact
same pixel spacing. Instead of rendering four tiles, the system can float the viewport in the global
display to the space straddling the tiles. That is, the system may project the geometry to the space
shown by the dotted line in Figure 4.1 and split the resulting image back into pieces that can be
displayed directly on each tile. Hence, the system does not need to render any polygon more than
once, and the frame buffer is read back one time instead of four.

When a processors geometry fits within the floating viewport, it can cut the rendering time
dramatically. This is most likely to happen when the number of tiles is small compared to the
number of processors and the spatial coherency of the data is good.

The floating viewport is always enabled by default. You can disable it by calling icetDis-

44

able with the ICET FLOATING VIEWPORT identifier. In general, there is not much reason to
turn off the floating viewport. The only real reason to turn off the floating viewport is to prevent
IceT from changing the perspective matrix when in single tile mode. However, IceT will change
the perspective matrix anyway when rendering with more than one tile, so any application that
might render to a tiled display should simply leave the floating viewport option on.

Active-Pixel Encoding

Because each processor renders only a fraction of the total geometry, the geometry often occupies
only a fraction of the screen space in some or all of the tiles in which it lies. Consequently, the ini-
tial images distributed between processors at the beginning of composition often have a significant
amount of blank space within them. Explicitly sending this information between processors is a
waste of bandwidth. Transferring sparse image data rather than full image data is a well-known
way to reduce network overhead. So far, our best method to do this has been with active-pixel
encoding.

Active-pixel encoding is a form of run-length encoding. A traditional run-length encoding
groups pixels into contiguous groups where the color and/or depth does not change. However,
in a practical 3D rendering, both the color and depth change almost everywhere except in the
background areas where nothing is rendered. To take advantage of this, images are grouped into
alternating run lengths of active pixels, pixels that contain geometry information, and inactive
pixels, pixels that have no geometry drawn on them. The active-pixel run length is followed by
pairs of color and depth values (or just one of the two if that is the only data available).. The
inactive pixels are not accompanied by any color or depth information. The depth information is
assumed to be of maximum depth, and the color values are ignored since they contain no geometry
information.

There are many other ways to encode sparse images and reduce data redundancy. However, we
are particularly enamored with our active-pixel encoding for this application because it exhibits all
of the following properties:

Fast encoding Image encoding requires each pixel to be visited exactly once. Each visit includes
a single depth buffer comparison, a single addition, and at most one copy.

Free decoding Processors typically perform a depth comparison as soon as they receive incoming
data. The depth comparison can be done directly against an image that is still encoded in
sparse form. In fact, the depth comparison can skip the comparisons for the inactive pixels.
Thus doing depth comparisons against encoded images is often faster than against unencoded
images.

Effective compression During the early stages of composition when the largest images must be
transferred, the sparse data is commonly less than one fifth the size of the original data.

45

Good worst case behavior No image with both color and depth information (the most common
case) will ever grow by more than a few bytes of header information. Images that have
geometry drawn on every pixel will only have one run length. Even images that alternate
between active and inactive status for every pixel, and hence have a run length for every
pixel, do not grow when encoded. The number of bytes required to record two run lengths is
equal to the number of bytes saved by not recording color and depth information for a single
inactive pixel. Thus, there is no penalty for recording run lengths of size one. If only color
or only depth is being recorded, it is possible to grow data in the pathological case where
pixels alternate between active and inactive, but in practice background pixels are grouped
and the data never really grows.

Active-pixel encoding is performed automatically during the compositing process. There is
currently no way to turn it off.

Data Replication

The primary advantage of IceT’s parallel rendering algorithms, and sort-last rendering algorithms
in general, is that they are very scalable with respect to the size of the input geometry. That is,
there is no overhead to adding more geometry other than the time it takes hardware to render and
there is only a logarithmic overhead for adding processors to the job.

The down side of a sort-last approach is that the image compositing overhead must be incurred
regardless of how little geometry is being rendered. This overhead limits the maximum frame rate
that can be achieved by the parallel rendering. Consequently, the parallel rendering can potentially
be slower than the serial rendering if the amount of geometry being rendered is small.

One possible way to get higher frame rates with smaller geometries would be to switch to a
different parallel rendering mode, but doing so is unnecessarily complicated. Another possibility
is to collect the data on a single process and circumvent the IceT library entirely. This approach is
fine when using single tile mode where the image is displayed at a single location, but is not at all
straightforward when displaying to a tiled display.

IceT provides a better solution than either of the previous two approaches. If the image com-
positing work is dominating the rendering time, you can set up a data replication group. To set
up a data replication group, you partition the geometry using fewer partitions than processes, and
then you share each partition with multiple processes. The processes that share a data partition
are a replication group. IceT will divide the compositing work for each replication group amongst
the processes in the group. In essence, you are adding geometry rendering work to remove image
compositing work.

One of the most common uses for data replication groups is to simply replicate the same ge-
ometry on all processes. This is helpful, for example, if your application supports lower levels
of detail for interaction. The lower level of detail can be replicated on all processes. However,

46

you could also conceivably arrange for any amount of replication between all replicated and none
replicated for a consistently appropriate overhead as the amount of data grows.

To set up data replication groups, it is your responsibility to partition and replicate geometry.
(IceT knows nothing about geometry.) You then report what the data replication groups are with
the icetDataReplicationGroup function.

void icetDataReplicationGroup(GLint size,
const GLint * processes);

icetDataReplicationGroup simply takes an array defining the replication group that
the local process belongs to. It is important to ensure that all processes belonging to a group provide
the same array to icetDataReplicationGroup. As a convenience, IceT also provides the
icetDataReplicationGroupColor function that allows you to define the data replication
groups by assigning an identifier (i.e. color) to each partition and having each process report the
partition color in which it belongs.

void icetDataReplicationGroupColor(GLint color);

As an example, let us say that processes 0–3 share the same geometry, 4–7 share the same
geometry, 8–11 share the same geometry, and so on. These replication groups could be reported
with the following call (where rank is the local process id as stored in the ICET RANK state
variable).

icetDataReplicationGroupColor(rank/4);

The data replication group is stored in the ICET DATA REPLICATION GROUP state variable
(retrievable with icetGet). The length of the group array is stored in ICET DATA REPLI-
CATION GROUP SIZE. The data replication group array is available regardless of whether you
used icetDataReplicationGroup or icetDataReplicationGroupColor to define
the group. The default value is an array with one value: the local process.

Timing (and Other Metrics)

Whenever icetDrawFrame is called, IceT measures the amount of time spent in the various
tasks required for parallel rendering. These timings are stored in the IceT state and can be retrieved
with icetGet. The state variables containing these timing metrics (in seconds) are as follows.

ICET RENDER TIME The total time spent in the drawing callback during the last call to
icetDrawFrame.

ICET BUFFER READ TIME The total time spent reading from OpenGL buffers during the last
call to icetDrawFrame.

47

ICET BUFFER WRITE TIME The total time spent writing to OpenGL buffers during the last call
to icetDrawFrame.

ICET COMPRESS TIME The total time spent in compressing image data using active pixel en-
coding during the last call to icetDrawFrame.

ICET BLEND TIME /ICET COMPARE TIME The total time spent in performing Z comparisons
or color blending of images during the last call to icetDrawFrame. These two vari-
ables always return the same value.

ICET RENDER TIME The total time spent in the drawing callback during the last call to
icetDrawFrame.

ICET COMPOSITE TIME The total time spent in compositing during the last call to
icetDrawFrame. Equal to ICET TOTAL DRAW TIME−ICET RENDER TIME−
ICET BUFFER READ TIME−ICET BUFFER WRITE TIME.

In addition to timing how long rendering and compositing takes, IceT also keeps track of how
much data is transmitted during compositing. The state variable ICET BYTES SENT stores the
total number of bytes sent by the calling process for transferring image data during the last call
to icetDrawFrame. Obviously, each process could have a different value for ICET BYTES -
SENT.

IceT also keeps track of the number of times icetDrawFrame has been called. This number
is stored in ICET FRAME COUNT.

48

Chapter 5

Strategies

IceT contains several parallel image compositing algorithms. The type of compositing algorithm
to use is selected by choosing a strategy. This chapter describes the underlying algorithm of each
strategy. This user’s guide will give qualitative comparisons between the strategies, but for a more
quantitative analysis, see the following paper.

Kenneth Moreland, Brian Wylie, and Constantine Pavlakos. “Sort-last parallel ren-
dering for viewing extremely large data sets on tile displays,” In Proceedings of IEEE
Symposium on Parallel and Large-Data Visualization and Graphics, October 2001,
pp. 85–154.

A strategy is specified using the icetStrategy function.

void icetStrategy(IceTStrategy strategy);

The strategy is set to one of the identifiers for the strategies documented in the follow-
ing sections of this chapter. A string documenting the current strategy can be retrieved with the
icetGetStrategyName function.

To describe the IceT compositing algorithms, we will use the example parallel rendering prob-
lem shown in Figure 5.1 where 6 processes are each rendering their own piece of a shuttle model
to a two tile display.

In this example, processes are denoted, in no particular order, by the colors gray, red, blue,
green, purple, and orange. The colors of the geometry correspond to the process that generated
each piece. Image boarder colors denote the process that generates and holds that image. (Apolo-
gies to those having troubles resolving the colors due to poor display or vision deficiencies. It
should not be hard to follow the descriptions either way.)

Single Image Compositing

Before discussing the multi-tile image compositing algorithms implemented by IceT, we visit the
standard single image compositing algorithms. You cannot directly select a single image composit-

49

Figure 5.1. An example of six processes rendering to two tiles
(top) and their composited image (bottom).

50

Figure 5.2. Tree composite network. Arrows represent the pass-
ing of data from one stage to the next. Processes receiving multiple
images composite them together.

ing algorithm as a strategy (most of the multi-tile algorithms work well in “single-tile” mode), but
these compositing algorithms are used as “subroutines” in some of the multi-tile algorithms. A
reference to a single image composite network in the subsequent compositing algorithm descrip-
tions refers to the algorithms described here.

TREE COMPOSITING

IceT internally has two single image composite implementations. The first of which is the tree
composite algorithm (sometimes also called binary tree composite due to its pair-wise grouping).
The basic network for tree composite is shown in Figure 5.2.

The tree compositing algorithm is organized in stages. At each stage the processes pair up.
One of the processes sends its data to its pair and then drops out of the computation. The receiving
process combines the two images (using the compositing operation described in Chapter 4) and
continues to the next stage. Processing continues until there is only one image (and one process)
remaining.

As just defined, the tree composite algorithm only handles process counts that are a power of

51

two (that is, the number of processes is equal to 2i for some integer i). IceT handles non-powers of
two gracefully. At any stage where the number of processes is not even and one of the processes
cannot be paired, that leftover process does nothing for that stage but then continues to participate
in the next stage. An example of this can be seen in the second stage of Figure 5.2.

The advantages of tree composite are its regular and efficient data transfers. The limiting
factor of tree compositing is that at each stage of the algorithm half of the processes drop out of
the computation. Thus, for more than a few processes tree compositing provides poor process
utilization.

BINARY-SWAP COMPOSITING

The second single image compositing algorithm used internally by IceT is the binary swap algo-
rithm. The basic network for binary-swap composite is shown in Figure 5.3

Like tree compositing, binary swap is organized in stages, and at each stage the processes pair
up. However, rather than have one process send all the data to the other, the image space is divided
in two and the processes swap image data so that each process has all the data for part of the
image. At the next stage, the processes pair up again, but with different partners that have the same
partition of the image. Processing continues until each of the N processes have an image 1/N
the size of the original image. At this point, all the processes send their sub-image to the display
processes where the images are stitched together.

As just defined, the binary-swap composite algorithm only handles processes that are a power
of two (that is, the number of processes is equal to 2i for some integer i). Some binary-swap
implementations handle non-powers of two by reducing the problem to the next largest power of
two and dropping the leftover processes, but IceT handles non-powers of two more gracefully than
that. Instead, IceT first finds the largest group of processes that is a power of two, makes a partition
out of them, then finds the next largest group of processes that remain that is a power of two, makes
a partition out of them, and so on. Each partition runs binary-swap independently up to the point
where each process has its own piece of data. At this point, the smaller partitions send their image
data to processes of the larger partitions, dividing up images where necessary. The largest partition
then finishes the compositing in the normal way by collecting all of the pieces.

An example of compositing with a non-power of two is given in Figure 5.3. The six processes
are partitioned first into a group of 4 and then into a group of 2. After swapping, the processes in
the smaller group send images to the larger group. In this case, the purple process sends image
data to the gray and blue processes, and the orange process sends to the red and green processes.

Like tree composite, binary swap exhibits regular and efficient data transfers. In addition, bi-
nary swap involves the use of all the processes throughout most of the compositing. Consequently,
binary swap exhibits very good process utilization and scaling with respect to the number of pro-
cesses on which it is run.

The most inefficient part of binary swap is the collection of image fragments at the end, which

52

Figure 5.3. Binary-swap composite network. Arrows represent
the passing of data from one stage to the next. Processes receiv-
ing multiple images composite or stitch them together. At most
stages each process divides its image data and distributes it. The
distribution of image data can be inferred from the target images.

53

is an extra step that tree composite does not need to take. Through some empirical studies, we
found that the binary tree algorithm was more efficient than binary swap on less then 8 processes
and less efficient on more than 8 processes. Consequently, IceT automatically switches between
the two algorithms based on the amount of processes involved in the compositing.

ORDERED COMPOSITING

In some applications, the order in which images are composited together makes a difference (see
the Volume Rendering section in Chapter 4). The details on how ordered compositing is achieved
is not given here, but the basic idea for both compositing algorithms is that they first swizzle the
processes so that their order matches the order in which the images need to be composited together.
When compositing images together, they make sure to maintain over/under constancy based on the
swizzled ranks from the originating processes. The networks are also managed such that no two
images are composited that are not directly “next” to each other (that is, there is no image that
needs to be inserted between them).

Reduce Strategy

An effective strategy implemented in IceT is the reduce to single tile strategy (or simply the
reduce strategy). In this strategy, the multi-tile composite problem is efficiently reduced to a set of
single image compositing problems, which are well studied and discussed in the previous section.
The reduce strategy is selected by calling icetStrategy with the ICET STRATEGY REDUCE
argument.

The reduce strategy is performed in two phases. In the first phase, processes are partitioned into
groups, each of which is responsible for compositing the image of one of the tiles. The number of
processes assigned to each tile is proportional to the number of non-empty images rendered for the
corresponding tile. In the example shown in Figure 5.4 there are a total of 9 non-empty images.
The left tile has 3 of the 9, that is 1

3 , of the images and thus is assigned 1
3 × 6 = 2 processes.

Likewise, the right image is assigned 2
3 ×6 = 4 processes.

When assigned processes to tiles, display processes and processes rendering images to the tile
are given preference. In the example of Figure 5.4, the gray and blue processes are assigned to the
left tile. The remainder are assigned to the right tile. Any image generated by a process that does
not belong to the destination tile is transferred to a process assigned to the tile. In the example,
the three processes that render two images, gray, red, and blue, each pass one of their images to
a process in the opposing process group. All of these transfers have unique senders and receivers
and thus can happen simultaneously.

In the second phase of the reduce strategy, each group of processes independently compos-
ites its images together using one of the single image compositing algorithms described in the
preceding section.

54

Single Image Composite Network Single Image Composite Network

Figure 5.4. Composite network for reduce strategy. Arrows rep-
resent the passing of data from one stage to the next. Processes
receiving multiple images composite them together. The single
image composite network is described in a preceding section.

55

Figure 5.5. Compositing for split strategy. First tiles are split
and assigned to processes (upper left). Then each process simul-
taneously sends its images to the responsible process (upper right)
and receives all sub-images for its piece (bottom). The composited
pieces are then collected and stitched together.

The reduce strategy supports ordered compositing. It does this by ensuring in the first phase that
processes receive only images that are “near” the image they hold, that is, there is no other image
in between the two images in the visibility ordering. The single image compositing algorithms of
the second phase each support their own ordered compositing.

Split Strategy

The tile split and delegate strategy (or simply the split strategy) is a simple algorithm that splits
up tiles, assigns each piece to a tile, and then sends image fragments directly to the tiles for com-
positing. The split strategy makes efficient use of processing resources, but exhibits haphazard
message passing which can cause issues on some high speed interconnects. The split strategy is
selected by calling icetStrategy with the ICET STRATEGY SPLIT argument.

The split strategy first assigns processes to tiles similar to how they are assigned in the reduce
strategy described previously. That is, the number of processes per tile is proportional to the num-

56

ber of non-empty images generated for it. Each tile is then split up evenly amongst all processes
assigned to it. In the example in Figure 5.5, the upper left image shows that the left image is split
between 2 processes and the right image is split amongst 4 processes.

On being assigned a section of tile, each process prepares to receive data from all the sending
processes using asynchronous receives. Each process then renders its images, splits them up, and
sends the sub-images to the corresponding process. When a process is ready and as it receives data,
the incoming images are composited together. Once all of the incoming images are composited,
the complete sub-image is sent to the display process to be stitched together.

The split strategy does not support ordered compositing. Using the split strategy in color blend-
ing mode will fail.

Virtual Trees Strategy

The virtual trees strategy is based on the binary tree compositing algorithm, but performs multiple
composites simultaneously to regain some of the load balance lost in the original algorithm. The
virtual trees strategy has nice regular communications, but still suffers from some load imbalance,
particularly when using fewer tiles and in later stages of the algorithm. The virtual trees strategy
is selected by calling icetStrategy with the ICET STRATEGY VTREE argument.

The virtual trees strategy works by creating a “virtual” tree for each tile. Contained in each tree
are processes that have rendered an image for that display tile. The algorithm proceeds much like
the binary tree composition algorithm except that the processes float amongst the trees, helping
with the compositing as they become available. Figure 5.6 shows an example of the virtual trees
compositing. In particular, notice that the gray process takes part in the left tree in stage 1, then
floats to take part in the right tree in stage 2, and then returns to take part in the left tree in stage 3.

When necessary, the process must keep track of multiple images belonging to different virtual
trees. Two conserve memory, images are not rendered until they are needed. Also, a process can
only hold two images at a time: one that it is sending and one that it is receiving. If a process is
holding an image for one tile, it cannot receive an image for another tile until it sends away the
image it is holding.

The virtual trees strategy does not support ordered compositing. Using the virtual trees strategy
in color blending mode will fail.

Serial Strategy

Despite its name, the serial strategy does not completely serialize the image compositing process.
Rather, it serially addresses the tiles, but performs parallel compositing for each tile. The serial
strategy is selected by calling icetStrategy with the ICET STRATEGY SERIAL argument.

57

St
ag

e
1

St
ag

e
2

St
ag

e
3

St
ag

e
4

Figure 5.6. Composite network for virtual trees strategy. Arrows
represent the passing of data from one state to the next. Processes
receiving multiple images composite them together.

58

Single Image Composite Network Single Image Composite Network

Figure 5.7. Composite network for serial compositing. One at
a time, each tile is composited using a parallel single image com-
posite network described in a previous section.

The serial strategy iterates over all of the tiles. For each tile, it composites all the images for
that tile using one of the single image compositing algorithms described in that preceding section.
As demonstrated in the example in Figure 5.7 images from all processes are composited for each
tile regardless of whether some of them may be empty.

Since the single image compositing algorithms support ordered compositing, the serial strategy
also supports ordered compositing.

The serial strategy is really only implemented as a baseline algorithm to compare other algo-
rithms. In general, the reduce strategy does at least as well or outperforms the serial strategy. We
have observed this even in single tile mode, possibly because the reduce strategy can throw away
empty images.

Direct Send Strategy

The direct send strategy is the simplest of all the strategies. Each process simply renders its
images and sends them directly to the display process where the images get composited, as shown
in Figure 5.8. The direct send strategy is selected by calling icetStrategy with the ICET -
STRATEGY DIRECT argument.

59

Figure 5.8. Composite network for direct send compositing. Ar-
rows represent the passing of data from one process to another.
Receiving process composite all incoming images together.

The direct send strategy is usually a poor performer. It was designed as a low watermark to
compare to other compositing strategies. The direct send strategy does, however, support ordered
compositing.

Implementing New Strategies

The IceT API was written while its strategies were being developed. As such, the design yields for
the relatively simplistic addition of new strategies. This section will provide the basic overview of
how to add a new strategy. It is probably easiest to start by modifying your IceT source to insert
your own strategy in the src/ice-t/strategies directory of the IceT source distribution. It should be
possible to create an external library with a strategy in it, but there may be some complications
with finding include files and getting the proper exports.

A strategy in IceT is created by simply defining an IceTStrategy object. The
IceTStrategy type is generally meant to be an opaque type so that most users to not have
to be concerned with the strategy innards. However, the IceT code base is currently quite stable
and the IceTStrategy type rarely changes in any case.

The IceTStrategy type is defined in the GL/ice-t.h header file.

typedef GLuint *IceTImage;
typedef struct _IceTStrategy {

const char *name;
GLboolean supports_ordering;
IceTImage (*compose)(void);

} IceTStrategy;

60

The name field in the IceTStrategy type is a short string identifying the strategy. (It is the
string returned by icetGetStrategyName when the strategy is active.) The supports or-
dering field is a Boolean value indicating whether the strategy supports ordered compositing.
Finally, and most importantly, the compose field is a function that is called during an invocation
of icetDrawFrame to perform the rendering and compositing. It takes no arguments (the com-
position should rely on the current IceT state), and returns a composited image. The IceTImage
type is opaque to compositing algorithms, but several functions, discussed later in this chapter, are
available to create and manipulate them.

All it takes to make IceT use a new strategy is to define and fill an object of type IceTStrat-
egy and pass it to the icetStrategy function. Typically this is done as a static object some-
where within your library source. For example, the declaration for the direct send strategy looks
like this.

static IceTImage directCompose(void);

IceTStrategy ICET_STRATEGY_DIRECT = { "Direct", ICET_TRUE, directCompose };

The object is also exposed in the GL/ice-t.h header file in a way that does not require linking
directly to the strategy function.

ICET_STRATEGY_EXPORT extern IceTStrategy ICET_STRATEGY_DIRECT;

The ICET STRATEGY DIRECT name is intentionally formed to look like a C macro for an
identifier, and it is intended to be used by the end user as such. (ICET STRATEGY EXPORT is
a real C macro that performs library export magic.) Your strategy should define a IceTStrat-
egy in a similar manner. The remainder of this section describes how to implement the compose
function.

INTERNAL STATE VARIABLES FOR COMPOSITING

As stated previously, a strategy’s compose function does not take any arguments. Instead, it gets
all relevant information from the IceT state. Many of the relevant state variables are described in
the documentation for the icetGet functions (as well as elsewhere throughout this document).
There are also several “hidden” state variables for internal use. The ones specifically useful for
within a composite function are listed here (along with the variable type, number of entries, and a
description). Note that these state variables generally should be read from, not written to.

ICET ALL CONTAINED TILES MASKS (boolean, ICET NUM TILES × ICET NUM PRO-
CESSES) Contains an appended list of ICET CONTAINED TILES MASK variables
for all processes. Given process p and tile t, the entry at p +ICET NUM TILES× t
contains the flag describing whether process p renders a non-blank image for tile t. This
variable is the same on all processes.

61

ICET CONTAINED TILES LIST (integer, ICET NUM CONTAINED TILES) All the tiles into
which the local geometry projects. In other words, this is the list of tiles which will not
be empty after local rendering. The local processor should generate images for these
tiles and participate in the composition of them.

ICET CONTAINED TILES MASK (boolean, ICET NUM TILES) This is a list of boolean flags,
one per tile. The flag is 1 if the local geometry projects onto the tile (that is, the local
render will not be empty for that tile) and 0 otherwise. This gives the same information
as ICET CONTAINED TILES LIST, but in a different way that can be more conve-
nient in some circumstances.

ICET CONTAINED VIEWPORT (integer, 4) Describes the region of the viewport that the ge-
ometry being rendered locally projects onto. The bounds of the data (given by
icetBoundingBox or icetBoundingVertices) onto the tile display and de-
termines the region of the tile display the data covers. The values in the four-tuple
correspond to x, y, width, and height, respectively, of the projection in global pixel
coordinates. This variable in conjunction with the ICET NEAR DEPTH and ICET -
FAR DEPTH give the full 3D projection of the local data in window space.

ICET FAR DEPTH (double, 1) The maximum depth value of the local geometry after projection.
See ICET CONTAINED VIEWPORTS for more details.

ICET IS DRAWING FRAME (boolean, 1) Set to true while in a call to icetDrawFrame and
set to false otherwise. This should always be set to true while the compose function is
being executed.

ICET NEAR DEPTH (double, 1) The minimum depth value of the local geometry after projection.
See ICET CONTAINED VIEWPORTS for more details.

ICET NUM CONTAINED TILES (integer, 1) The number of tiles into which the local geometry
projects. This is the length of the ICET CONTAINED TILES LIST variable.

ICET PROJECTION MATRIX (double, 16) The current projection matrix, read from OpenGL at
the invocation of icetDrawFrame.

ICET TILE CONTRIB COUNTS (integer, ICET NUM TILES) For each tile, provides the num-
ber of processes that will produce a non-empty image for that tile.

ICET TOTAL IMAGE COUNT (integer, 1) The total number of non-empty images produced by
all processes for all tiles. This variable is the sub of all entries in ICET TILE CON-
TRIB COUNTS.

In addition to several internal state variables, IceT also has several internal functions for ac-
cessing them. The most important one for implementing a strategy is icetUnsafeStateGet,
which is defined in the state.h header file.

void *icetUnsafeStateGet(GLenum pname);

62

The implementation for the icetGet functions is to copy the data into a memory buffer you
provide, performing type conversion as necessary. icetUnsafeStateGet simply returns the
internal pointer where the data is stored. This can be faster and more convenient (since you do
not have to allocate your own memory), but is unsafe in two ways. First, if the state variable is
changed, the pointer you receive can become invalid. Second, no type conversion is performed.
You have to make sure you cast the pointer correctly yourself, and there is no real way to query
the correct type. Since the state setting functions are hidden from the end user API, it is possible
to manage these erroneous conditions.

MEMORY MANAGEMENT

Compositing algorithms by their nature require buffers of memory of non-trivial size to hold im-
ages, among other data, that are not needed in between calls to the compositing. One approach is
to simply use the standard C malloc and free functions. However, some implementations of
malloc/free are not always efficient, and even the best implementations can have a tendency to
fragment memory over time as large buffers are allocated and released.

To ensure efficient memory allocation, IceT provides its own memory management that is
simple but effective for its compositing operations. IceT keeps around a pool of memory to be
used by various components of the API. To use the memory pool, the code first clears the buffer
and ensures that it is big enough. The code then reserves sections of the pool for various buffers.
Since this pool changes size infrequently, allocating time or memory fragmentation is not an issue.
The size of the allocated memory is also minimized since it is shared throughout all of IceT.

The icetResizeBuffer function is used to clear out the memory pool. The declaration for
this function is located in the context.h header file.

void icetResizeBuffer(int size);

The icetResizeBuffer function ensures that the memory pool is at least size bytes
large. It also resets all previously allocated memory (that is, freeing it back into the pool). This
has two important consequences. First, you must know the amount of memory you need a-priori.
You cannot resize the buffer once you have started allocating memory blocks. If you try to do so,
the previously allocated blocks (potentially) will be destroyed.

Second, since this block of data is shared amongst all functions of IceT, you must be aware that
other IceT code can potentially release your memory and allocate its own. You should feel free to
use IceT’s memory pool from within the compose function of your strategy and the image that it
returns is best allocated from this buffer. Furthermore, the helper functions described in this section
to implement your own strategy are also safe to call. Be aware, however, that in between calls to
your composite function the memory you allocate will be lost and you will have to reallocate your
buffers.

Once you have sized the memory pool, use icetReserveBufferMem to allocate a chunk
of memory.

63

void *icetReserveBufferMem(int size);

icetReserveBufferMem returns a pointer to a buffer reserved to the given size. The buffer
is aligned on 64-bit boundaries to help prevent illegal memory accesses.

The following code snippet (taken from the direct send strategy) demonstrates the use of ice-
tResizeBuffer and icetReserveBufferMem. (The image size functions are described in
the section on image functions.)

icetResizeBuffer(2*icetSparseImageSize(max_pixels)
+ icetFullImageSize(max_pixels)
+ num_tiles*sizeof(GLint));

inImage = icetReserveBufferMem(icetSparseImageSize(max_pixels));
outImage = icetReserveBufferMem(icetSparseImageSize(max_pixels));
image = icetReserveBufferMem(icetFullImageSize(max_pixels));
tile_image_dest = icetReserveBufferMem(num_tiles*sizeof(GLint));

IMAGE MANIPULATION FUNCTIONS

You probably have noticed from the definition of the strategy structure that the compose function
returns a variable of type IceTImage. There is another variable type used internally by strategies
called IceTSparseImage. Both image types can hold color data or depth data or both. The
IceTImage type stores pixels as raw data, simple 2D arrays that are compatible with OpenGL
buffers. The IceTSparseImage stores images using active-pixel encoding, the run length en-
coding described in the Active-Pixel Encoding section of Chapter 4.

Both the IceTImage type and the IceTSparseImage type are opaque to compositing
algorithms. Although you will create them by allocating a buffer and casting the pointer, you will
not access the data directly. Instead, you will manipulate it with the functions described in this
section. These functions are defined in the image.h header file.

Creating Images

To create an image, you first need to know how big of a buffer you need. You can do this with the
icetFullImageSize and icetSparseImageSize functions.

GLuint icetFullImageSize(GLuint pixels);

GLuint icetSparseImageSize(GLuint pixels);

The former of these functions return the size, in bytes, required for an IceTImage containing
the number of pixels specified. The latter performs the same operation for an IceTSpar-
seImage. A sparse image can vary in actual size depending on how well the data compresses so

64

icetSparseImageSize conservatively returns the maximum amount of bytes needed in any
case.

To ensure memory is managed efficiently, your strategy will have to create all of the images
it uses by allocating them with icetResizeBuffer and icetReserveBufferMem (dis-
cussed in the previous section with an example) and then casting the pointer to IceTImage or
IceTSparseImage as appropriate.

Image structures are basically a block of memory with a small bit of header data. IceT functions
that create images will fill that information for you. Occasionally you may need to explicitly fill
the header information. This is done with icetInitializeImage.

void icetInitializeImage(IceTImage image,
GLuint pixel count);

icetInitializeImage will initialize the image buffer to be a full containing pixel -
count pixels and the type of pixel data specified by the ICET INPUT BUFFERS state parameter.
There are only two common instances in which you will have to initialize an image yourself. The
first is that you are filling the buffer one part at a time. The other is that you are creating a blank
image, which frequently happens when a tile is empty. To clear out an image use icetClearIm-
age.

void icetClearImage(IceTImage image);

icetClearImage will set all of the pixel data in an image to the background. In practice,
icetClearImage is coupled with a call to icetInitializeImage such as in the following.

image = icetReserveBufferMem(icetFullImageSize(max_pixels));
icetInitializeImage(image, max_pixels);
icetClearImage(image);

Querying Images

Once you have an initialized image, whether initialized by you or some other IceT function, you
can retrieve the number of pixels in it with icetGetImagePixelCount.

GLuint icetGetImagePixelCount(image);

Unlike most functions, icetGetImagePixelCount can take either a IceTImage or a
IceTSparseImage.

If you need to access the actual data of a IceTImage, you can do so with icetGetImage-
ColorBuffer and icetGetImageDepthBuffer.

GLubyte *icetGetImageColorBuffer(IceTImage image);
GLuint *icetGetImageDepthBuffer(IceTImage image);

65

For these functions to work, the image must be initialized and contain the respective color or
depth buffer (of course). If this condition is not met, an error is raised and NULL is returned.

Rendering Images

To get the image for a particular tile in the display, use either icetGetTileImage or
icetGetCompressedTileImage.

void icetGetTileImage(GLint tile,
IceTImage buffer);

GLuint icetGetCompressedTileImage(GLint tile,
IceTSparseImage buffer);

Both functions will invoke a rendering for that tile (performing the appropriate projection trans-
formations) as necessary, read back the frame buffers and store the results in an image buffer you
specify. The difference, of course, is that icetGetTileImage fills the buffer with raw data
whereas icetGetCompressedTileImage will compress the image data with active-pixel
encoding.

icetGetTileImage writes a pre-determined amount of data into buffer, which corre-
sponds to the value returned by icetFullImageSize. The amount of data written to buffer
by icetGetCompressedTileImage varies depending on how well the image compresses.
The actual number of bytes written is returned by icetGetCompressedTileImage. In gen-
eral, you should record this size as you will need it to transfer the data to another process. The
amount of data written will never exceed the amount returned by icetSparseImageSize.

Compressing Images

icetCompressImage converts a full IceTImage into to more compact IceTSparseIm-
age.

GLuint icetCompressImage(const IceTImage imageBuffer,
IceTSparseImage compressedBuffer);

icetCompressImage returns the actual size of compressedBuffer in bytes.

Sometimes it is convenient to break up an image into pieces, and compress each piece. This is
common when dividing up an image to be divided amongst some amount of processes. This can
be most easily achieved by using the icetCompressSubImage.

66

GLuint icetCompressSubImage(
const IceTImage imageBuffer,
GLuint offset,
GLuint pixels,
IceTSparseImage compressedBuffer);

icetCompressSubImage compresses a region of contiguous pixels. The block of pixels
starts offset pixels past the beginning of the image and is pixels long. icetCompressIm-
age is equivalent to calling icetCompressSubImage with offset set to 0 and pixels set
to the result of icetGetImagePixelCount.

A sparse image can be returned to its uncompressed form with icetDecompressImage.

GLuint icetDecompressImage(
const IceTSparseImage compressedBuffer,
IceTImage imageBuffer);

icetDecompressImage returns the number of pixels in the resulting image, which is the
same number that you will get if you call icetGetImagePixelCount on the resulting image.

COMMUNICATIONS

The first thing to know about communications in IceT is to understand that it is up to the strategy to
count how many bytes are being transmitted in your compose function and store this in the ICET -
BYTES SENT state variable. To make this easier, common.h (found in the strategies directory)
provides icetAddSentBytes.

void icetAddSentBytes(GLint num sending);

icetAddSentBytes simply adds num sending to the value in state variable ICET -
BYTES SENT. A call to icetAddSentBytes should be coupled with every communication
call that sends data.

IceT provides an abstract communication layer, which is described in detail in Chapter 6. A
handle to a communicator is stored in the current context. To make using the communicator easier,
a set of convenience functions described next is available in the context.h include file. All of
these functions are based off of those found in the MPI standard. For documentation, see that for
the corresponding MPI function. Note that each function is missing an argument specifying the
communicator. These functions just grab the current context’s communicator.

struct IceTCommunicatorStruct *ICET COMM DUPLICATE(void);

void ICET COMM DESTROY(void);

67

void ICET COMM SEND(const void * buf,
int count,
GLenum datatype,
int dest,
int tag);

void ICET COMM RECV(void * buf,
int count,
GLenum datatype,
int src,
int tag);

void ICET COMM SENDRECV(const void * sendbuf,
int sendcount,
GLenum sendtype,
int dest,
int sendtag,
void * recvbuf,
int recvcount,
GLenum recvtype,
int src,
int recvtag);

void ICET COMM ALLGATHER(const void * sendbuf,
int sendcount,
GLenum type,
void * recvbuf);

IceTCommRequest ICET COMM ISEND(const void * buf,
int count,
GLenum datatype,
int dest,
int tag);

IceTCommRequest ICET COMM IRECV(void * buf,
int count,
GLenum datatype,
int src,
int tag);

void ICET COMM WAIT(IceTCommRequest * request);

void ICET COMM WAITANY(
int count,
IceTCommRequest * array of requests);

68

int ICET COMM SIZE(void);

int ICET COMM RANK(void);

In each of these functions, the type parameter is set to one of the following: ICET BOOLEAN,
ICET BYTE, ICET SHORT, ICET INT, ICET FLOAT, or ICET DOUBLE

Transferring Images

Although the IceTImage and IceTSparseImage types are opaque, they can be transferred as
simple byte buffers. To do so, you need only the size of the buffer. The following sends an image
stored in the variable image of type IceTImage.

size = icetFullImageSize(icetGetImagePixelCount(image));
icetAddSentBytes(size);
ICET_COMM_SEND(image, size, ICET_BYTE, dest, tag);

And the following is the paired receive for the image. Note that the number of pixels in pixel -
count need to be as large or larger then the actual number of pixels sent, but it otherwise does not
have to match exactly. And, of course, image must be allocated (generally with icetResize-
Buffer and icetReserveBufferMem) with the appropriate amount of memory.

size = icetFullImageSize(pixels);
ICET_COMM_RECV(image, size, ICET_BYTE, src, tag);

Most of the time, you will actually send compressed image data. Compressed images are sent
in the same manner as full image. The only difference is to make sure you give the communication
function the actual size of the image.

size = icetCompressImage(image, compressed_image);
ICET_COMM_SEND(compressed_image, size, ICET_BYTE, dest, tag);

And the following is the paired receive for the sparse image. Note that we do not need to know
the actual number of bytes received. Rather, we just need to know the maximum size of the image
and have a buffer that large.

size = icetSparseImageSize(pixels);
ICET_COMM_RECV(compressed_image, size, ICET_BYTE, src tag);

69

Helper Communication Functions

common.h (found in the strategies directory) contains some helper functions that implement com-
mon communication patterns. They may be helpful in implementing your strategy.

void icetRenderTransferFullImages(
IceTImage imageBuffer,
IceTSparseImage inImage,
IceTSparseImage outImage,
GLint num receiving,
GLint * tile image dest);

icetRenderTransferFullImages renders all the tiles that are specified in the ICET -
CONTAINED TILES state array and sends them to the processors with ranks specified in tile -
image dest. This method is guaranteed not to deadlock. It only uses memory given with the
buffer arguments, and will make its best efforts to get the graphics and network hardware to run in
parallel.

imageBuffer is a buffer big enough to hold color and/or depth values that is ICET MAX -
PIXELS big. The size can be determined with the icetFullImageSize function in image.h.
inImage and outImage are two buffers big enough to hold sparse color and depth information
for an image that is ICET MAX PIXELS big. The size can be determined with the icetSpar-
seImageSize macro in image.h. num receiving is the number of images this processor is
receiving, and tile image dest is an array where if tile t is in ICET CONTAINED TILES,
then the rendered image for tile t is sent to tile image dest[t].

There is also a more general form for transferring images or other large data blocks.

typedef void *(*IceTGenerateData)(GLint id, GLint dest, GLint *size);

typedef void *(*IceTHandleData)(void *, GLint src);

void icetSendRecvLargeMessages(
GLint numMessagesSend,
GLint * messageDestinations,
GLint messagesInOrder,
IceTGenerateData generateDataFunc,
IceTHandleData handleDataFunc,
void * incomingBuffer,
GLint bufferSize);

icetSendRecvLargeMessages is similar to icetRenderTransferFullImages
except that it works with generic data, data generators, and data handlers. It takes a count of a
number of messages to be sent and an array of ranks to send to. Two callbacks are required. One
generates the data (so large data may be generated JIT to save memory) and the other handles
incoming data. The generate callback is run right before the data it returns is sent to a particular
destination. This callback will not be called again until the memory it returned is no longer in use,

70

so the memory may be reused. As large messages come in, the handle callback is called. As an
optimization, if a process sends to itself, then that will be the first message created. This gives
the callback an opportunity to build its local data while waiting for incoming data. The handle
callback returns a pointer to a buffer to be used for the next large message receive. It should be
common for this message buffer to be reused too.

numMessagesSending is a count of the number of large messages this processor is send-
ing out. messageDestinations is an array of size numMessagesSending that contains
the ranks of message destinations. generateDataFunc is a callback function that generates
messages. The function is given the index in messageDestinations and the rank of the des-
tination as arguments. The data of the message and the size of the message (in bytes) are returned.
The generateDataFunc will not be called again until the returned data is no longer in use.
Thus the data may be reused. handleDataFunc is a callback function that processes messages.
The function is given the data buffer and the rank of the process that sent it. The function is ex-
pected to return a buffer to use for the next message receive. If the callback is finished with the
buffer it was given, it is perfectly acceptable to return it again for reuse. incomingBuffer is a
buffer to use for the first incoming message. bufferSize is the maximum size of a message.

INTERNAL FUNCTIONS FOR COMPOSITING

In the strategies directory, the common.h header has prototypes for the single image compositing
algorithms described in the Single Image Compositing section of this chapter.

Parallel Compositing

void icetTreeCompose(GLint * compose group,
GLint group size,
GLint image dest,
IceTImage imageBuffer,
IceTSparseImage compressedImageBuffer);

icetTreeCompose performs a binary tree composition of images amongst a subset of pro-
cesses in the current communicator of the context. Rather than perform the composition on all the
processes in the communicator, it performs them on a subset with arbitrary ordering. (Note that
ordering matters when doing alpha blending as opposed to the z-buffer operation.) compose -
group is the mapping of processes from the communicator ranks to the “group” ranks. The size
of the groups (and the length of the compose group array) is specified by group size. The
compose image ends up in the processor with rank compose group[image dest]. image-
Buffer should contain the partial input image to be composited. (Of course, each process should
have its own partial image. All processes should provide images of identical dimensions.) On
the process with the rank compose group[image dest], the final image will be stored in this
buffer. compressedImageBuffer is a buffer that is used internally by icetTreeCompose
for compressing, sending, and receiving images. It must be large enough to hold an image as large

71

as the input, but its contents are ignored on the function invocation and the contents are garbage on
return.

The following is a very simple example of compositing the image on tile 0 and providing the
result on the process with rank 0. If ordered compositing is enabled, then the order is respected.
This is similar to the serial strategy except that only the first tile is composited.

IceTImage treeComposeTile0(void)
{

GLint max_pixels;
GLint rank;
GLint num_proc;
GLint *display_node;
GLint image_dest;
GLboolean ordered_composite;
IceTImage image;
IceTSparseImage scratchImage;
GLint *compose_group;
int i;

icetGetIntegerv(ICET_NUM_TILES, &num_tiles);
icetGetIntegerv(ICET_TILE_MAX_PIXELS, &max_pixels);
icetGetIntegerv(ICET_RANK, &rank);
icetGetIntegerv(ICET_NUM_PROCESSES, &num_proc);
display_nodes = icetUnsafeStateGet(ICET_DISPLAY_NODES);
ordered_composite = icetIsEnabled(ICET_ORDERED_COMPOSITE);

icetResizeBuffer(icetFullImageSize(max_pixels)
+ icetSparseImageSize(max_pixels)
+ sizeof(int)*num_proc);

image = icetReserveBufferMem(icetFullImageSize(max_pixels));
scratchImage = icetReserveBufferMem(icetSparseImageSize(max_pixels));
compose_group = icetReserveBufferMem(sizeof(GLint)*num_proc);

if (ordered_composite) {
icetGetIntegerv(ICET_COMPOSITE_ORDER, compose_group);
for (image_dest = 0; compose_group[image_dest] != display_nodes[i];

image_dest++);
} else {

for (i = 0; i < num_proc; i++) {
compose_group[i] = i;

}
image_dest = display_nodes[0];

}

icetGetTileImage(0, image);
icetTreeCompose(compose_group, num_proc, image_dest, image, scratchImage);

72

return image;
}

A much more scalable image compositing algorithm is binary swap. Usually you will use the
binary-swap algorithm instead of tree compose. The only exception is that binary-swap has a bit
more overhead than tree compose, so for small amounts of processes it may be moderately faster
to run tree compose.

void icetBswapCompose(GLint * compose group,
GLint group size,
GLint image dest,
IceTImage imageBuffer,
IceTSparseImage scratchImage1,
IceTSparseImage scratchImage2);

icetBswapCompose behaves very much like icetTreeCompose except that it uses a
different (and much more scalable) algorithm. The arguments of the two functions are very similar.
(The only difference is that icetBswapCompose requires two IceTSparseImage buffers
whereas icetTreeCompose requires only one.)

Rather than perform the composition on all the processes in the communicator, icetBswap-
Compose performs them on a subset with arbitrary ordering. (Note that ordering matters when
doing alpha blending as opposed to the z-buffer operation.) compose group is the mapping
of processes from the communicator ranks to the “group” ranks. The size of the groups (and the
length of the compose group array) is specified by group size. The compose image ends
up in the processor with rank compose group[image dest]. imageBuffer should contain
the partial input image to be composited. (Of course, each process should have its own partial im-
age. All processes should provide images of identical dimensions.) On the process with the rank
compose group[image dest], the final image will be stored in this buffer. scratchIm-
age1 and scratchImage2 are buffers that are used internally by icetBswapCompose for
compressing, sending, and receiving images. It must be large enough to hold an image as large as
the input, but its contents are ignored on the function invocation and the contents are garbage on
return.

The following is a very simple example of compositing the image on tile 0 and providing the
result on the process with rank 0. It is identical to the previous example code except that it uses
binary swap and is equally similar to the serial strategy. If ordered compositing is enabled, then
the order is respected.

IceTImage bswapComposeTile0(void)
{

GLint max_pixels;
GLint rank;
GLint num_proc;

73

GLint *display_node;
GLint image_dest;
GLboolean ordered_composite;
IceTImage image;
IceTSparseImage scratchImage1, scratchImage2;
GLint *compose_group;
int i;

icetGetIntegerv(ICET_NUM_TILES, &num_tiles);
icetGetIntegerv(ICET_TILE_MAX_PIXELS, &max_pixels);
icetGetIntegerv(ICET_RANK, &rank);
icetGetIntegerv(ICET_NUM_PROCESSES, &num_proc);
display_nodes = icetUnsafeStateGet(ICET_DISPLAY_NODES);
ordered_composite = icetIsEnabled(ICET_ORDERED_COMPOSITE);

icetResizeBuffer(icetFullImageSize(max_pixels)
+ icetSparseImageSize(max_pixels)*2
+ sizeof(int)*num_proc);

image = icetReserveBufferMem(icetFullImageSize(max_pixels));
scratchImage1 = icetReserveBufferMem(icetSparseImageSize(max_pixels));
scratchImage2 = icetReserveBufferMem(icetSparseImageSize(max_pixels));
compose_group = icetReserveBufferMem(sizeof(GLint)*num_proc);

if (ordered_composite) {
icetGetIntegerv(ICET_COMPOSITE_ORDER, compose_group);
for (image_dest = 0; compose_group[image_dest] != display_nodes[i];

image_dest++);
} else {

for (i = 0; i < num_proc; i++) {
compose_group[i] = i;

}
image_dest = display_nodes[0];

}

icetGetTileImage(0, image);
icetBswapCompose(compose_group, num_proc, image_dest, image,

scratchImage1, scrachImage2);

return image;
}

Local Compositing

When developing a multi-tile compositing algorithm (or any parallel compositing algorithm for
that matter), it is often cannot be broken into full composites of single images. Instead, you must
break the problem down further into image transfers and image combinations. Image transfers

74

have already been covered previously in this section. The IceT library contains multiple methods
to locally composite two images together.

void icetComposite(IceTImage destBuffer,
const IceTImage srcBuffer,
int srcOnTop);

icetComposite takes the images stored in destBuffer and srcBuffer, composites
them together, and stores the result in destBuffer. The compositing operation is automatically
determined by the current state. (See Chapter 4 for information on how the compositing opera-
tion is determined.) If the compositing operation is order dependent, then the Boolean argument
srcOnTop determines whether srcBuffer or destBuffer is on top.

If one of your images is compressed (stored in a IceTSparseImage, it is faster to perform
the compositing operation on the compressed image rather than decompressing first. In fact, it
is faster to composite a compressed image than two full image because the active-pixel encoding
allows the composite algorithm to skip over groups of background pixels. This gives you the
double win of faster image transfer and faster compositing.

void icetCompressedComposite(
IceTImage destBuffer,
const IceTSparseImage srcBuffer,
int srcOnTop);

icetCompressedComposite behaves just like icetComposite except that sr-
cBuffer is a compressed image rather than a full image. The images in destBuffer and
srcBuffer are composited together, and the results are stored in destBuffer.

Many parallel compositing algorithms break images into pieces, distribute amongst processes,
and composite the pieces. To facilitate the compositing image pieces, IceT provides icetCom-
pressedSubComposite.

void icetCompressedSubComposite(
IceTImage destBuffer,
GLuint offset,
GLuint pixels,
const IceTSparseImage srcBuffer,
int srcOnTop);

The destBuffer, srcBuffer and srcOnTop arguments are the same as those in
icetCompressedComposite. The offset and pixels arguments specify a region of con-
tiguous pixels in destBuffer to perform the compositing in.

75

76

Chapter 6

Communicators

IceT implements an abstract communication layer. As we will see later in this chapter, this com-
munication layer is a message passing interface based heavily on MPI.1 As an end user to IceT,
you need to know almost nothing about this communication layer. You need only to get a refer-
ence to an IceTCommunicator object. This object is opaque. You only need to get one, pass
it to the icetCreateContext, and then delete it. icetCreateContext will duplicate the
communicator, so you need not worry about when you delete the context you created.

Most of the time you will use the built-in MPI implementation of the communicator, which
is discussed in the first section. If necessary, you can write your own communicator, which is
discussed in the following section.

MPI Communicators

Using the MPI implementation of a communicator, you simply include GL/ice-t mpi.h in your
source and link icet mpi into your own library or executable. The only function you need to use is
icetCreateMPICommunicator.

IceTCommunicator icetCreateMPICommunicator(
MPI Comm mpi comm);

Quite simply, icetCreateMPICommunicator converts an MPI Comm, an MPI commu-
nicator, into an IceTCommunicator, an IceT communicator. icetCreateMPICommuni-
cator duplicates the MPI communicator. Thus, you can delete the mpi comm communicator
as soon as icetCreateMPICommunicator as soon as it exits. Furthermore, the returned
IceTCommunicator will internally manage the MPI communicator it created.

Once created, the IceTCommunicator may be deleted with icetDestroyMPICommu-
nicator.

void icetDestroyMPICommunicator(IceTCommunicator comm);

1In fact, the original implementation of IceT used MPI directly. The abstract layer was inserted later as a more-or-
less cut-and-paste operation.

77

icetDestroyMPICommunicator will release all the resources used by comm. This in-
cludes the internal MPI communicator, which you do not have direct access to. comm will be
invalid once you call icetDestroyMPICommunicator. However, you do not have to worry
about any IceT context you have passed it to since they will have duplicated the communicator.

Using the MPI communicator is easy. First, you include the GL/ice-t mpi.h header.

#include <GL/ice-t.h>
#include <GL/ice-t_mpi.h>

When you are ready to create an IceT context (usually during the initialization of your pro-
gram), create the MPI-based communicator, use it to initialize the context, and then destroy the
communicator.

icetComm = icetCreateMPICommunicator(MPI_COMM_WORLD);
icetContext = icetCreateContext(icetComm);
icetDestroyMPICommunicator(icetComm);

Once you have a context, you can use IceT as explained throughout this document. When you
are ready, destroy the context as you normally would.

icetDestroyContext(icetContext);

Finally, do not forget to use the icet mpi library when linking your executable or library.

A more detailed example of using the MPI communicator is in the Chapter 2 tutorial.

User Defined Communicators

Occasionally, it may be necessary to provide your own version of a parallel communicator. This
may be because you are using a communication library other than MPI. It may also be because you
wish to augment the behavior of MPI when it is used by IceT. To provide your own communicator,
you need only to create an IceTCommunicator object. In previous sections we have discussed
IceTCommunicator as an opaque type, and unless you are implementing your own you should
treat it as such. If you are implementing a IceTCommunicator, you will see that it is simply a
pointer to a structure containing references to several communication functions.

struct IceTCommunicatorStruct {
struct IceTCommunicatorStruct *

(*Duplicate)(struct IceTCommunicatorStruct *self);

78

void (*Destroy)(struct IceTCommunicatorStruct *self);
void (*Send)(struct IceTCommunicatorStruct *self,

const void *buf, int count, GLenum datatype, int dest,
int tag);

void (*Recv)(struct IceTCommunicatorStruct *self,
void *buf, int count, GLenum datatype, int src, int tag);

void (*Sendrecv)(struct IceTCommunicatorStruct *self,
const void *sendbuf, int sendcount, GLenum sendtype,
int dest, int sendtag,
void *recvbuf, int recvcount, GLenum recvtype,
int src, int recvtag);

void (*Allgather)(struct IceTCommunicatorStruct *self,
const void *sendbuf, int sendcount, int type,
void *recvbuf);

IceTCommRequest (*Isend)(struct IceTCommunicatorStruct *self,
const void *buf, int count, GLenum datatype,
int dest, int tag);

IceTCommRequest (*Irecv)(struct IceTCommunicatorStruct *self,
void *buf, int count, GLenum datatype,
int src, int tag);

void (*Wait)(struct IceTCommunicatorStruct *self, IceTCommRequest *request);
int (*Waitany)(struct IceTCommunicatorStruct *self,

int count, IceTCommRequest *array_of_requests);

int (*Comm_size)(struct IceTCommunicatorStruct *self);
int (*Comm_rank)(struct IceTCommunicatorStruct *self);
void *data;

};

typedef struct IceTCommunicatorStruct *IceTCommunicator;

To create a custom IceTCommunicator simply allocate the structure and fill in the function
pointers. An implementation for a function that creates an IceT communicator might look like the
following. In this example, the my* functions are implementations of the communication functions.

IceTCommunicator myCreateCommunicator(myCommType myComm)
{

IceTCommunicator comm = malloc(sizeof(struct IceTCommunicatorStruct));

comm->Duplicate = myDuplicate;
comm->Destroy = myDestroy;
comm->Send = mySend;
/* And so on... */

79

comm->data = malloc(sizeof(myComm))
/* Making a duplicate here would be better. */
memcpy(comm->data, myComm, sizeof(myComm));

return comm;
}

The paired destruction function should probably just call the Destroy function of the commu-
nicator (or vice versa) to ensure that destroy works either way.

void myDestroyCommunicator(IceTCommunicator comm)
{

comm->Destroy(comm);
}

static void myDestroy(IceTCommunicator self)
{

myCommType *myComm = (myCommType *)self->data;
/* Release resources of myComm. */
free(myComm);
free(self);

}

For a more concrete example of implementing an IceT communicator, see the IceT code for
the MPI communicator.

80

Chapter 7

Future Work

The majority of the development for IceT was finished by 2004. Since then, IceT has proven to be
a stable and versatile library that is currently being used in several production applications.

The following is a list of potential changes to IceT. As of this writing, none of these are cur-
rently under development. Rather, these are identified shortcomings of various degrees in IceT.
These features will be handled on an as needed basis, assuming the need should arise.

Update scalability tests. The scalability tests for IceT were run during its major development,
which was several years ago. At the time, 64 nodes was considered a pretty enormous big
visualization cluster. Nowadays, IceT is sometimes used to run visualization on supercom-
puters containing thousands of processes. Verifying the scalability of the system occasion-
ally is always a good idea. Also, the reduce strategy makes assumptions about the relative
performance of the binary tree and binary swap composition algorithms. The performance
point might have changed. Also, given that binary swap is reducing the image with each step,
it might be worthwhile to switch to binary tree in the middle of the binary swap algorithm.

Render aborts. In interactive applications, it is often convenient to be able to abort a render that
takes some time to finish. Aborting a render in the middle of a composite is tricky, because
you need to make sure that everyone is aware of the abort and that all communication is
correctly canceled. This could be partially implemented in IceT’s communication layer, but
all the strategies still have to be ready to quit once a communication is canceled due to an
abort (or at the very least ignore it without crashing).

Decouple from OpenGL. In retrospect, tying the IceT library so closely to OpenGL was a mis-
take. Although most graphical applications, even today, use OpenGL for their rendering, it
unnecessarily precludes the use of any other graphics library (such as DirectX, for example)
or any application that does not use a graphics API to create images. The direct interfacing
with OpenGL can even complicate the integration with applications that also use OpenGL.
Although there should always be a layer to simplify the interface with OpenGL, ideally you
should be able to use a compositing library like IceT independently of OpenGL.

Allow higher precision color buffers. The internal representation of images in IceT uses 8-bit
colors. This was an intentional design so that RGBA colors can be treated as single 32-bit
integers and greatly speed up compositing operations. Even today, this is fine representation
for colors. Few display devices can provide more color resolution. However, when blending

81

colors stored as 8-bit values, quantization errors can occur. Most of the time this is not an
issue with IceT, but it can create seams in images with very low opacity.

Automatically count network communication. The way IceT builds the communication metric
stored in ICET BYTES SENT is to require each strategy to count how many bytes they
send. This is a rather fragile implementation. A better approach would be to have the
communications layer count bytes.

Source file names. The names of the internal IceT source files are a bit too generic. Names like
image.c and draw.c are not clearly part of IceT and might conflict with other source file
names in projects where the libraries are used. Although this will not cause any namespace
collisions in linking, it can be irritating while debugging if the file names are not easily
resolved.

82

Chapter 8

Man Pages

In this chapter you will find a man page for each of the functions available in the IceT API.

83

icetAddTile

NAME

icetAddTile – add a tile to the logical display.

SYNOPSIS

#include <GL/ice-t.h>

int icetAddTile(GLint x,
GLint y,
GLsizei width,
GLsizei height,
int display rank);

DESCRIPTION

Adds a tile to the tiled display. Every process, whether actually displaying a tile or not, must
declare the tiles in the display and which processes drive them with icetResetTiles and
icetAddTile. Thus, each process calls icetAddTile once for each tile in the display, and
all processes must declare them in the same order.

The parameters x, y, width, and height define the tiles viewport in the logical global
display much in the same way glViewport declares a region in a physical display. IceT places
no limits on the extents of the logical global display. That is, there are no limits on the values of x
and y. They can extend as far as they want in both the positive and negative directions.

IceT will project its images onto the region of the logical global display that just covers all of
the tiles. Therefore, shifting all the tiles in the logical global display by the same amount will have
no real overall effect.

The display rank parameter identifies the rank of the process that will be displaying the
given tile. It is assumed that the output of the rendering window of the given process is projected
onto the space in a tiled display given by x, y, width, and height. Each tile must have a valid
rank (between 0 and ICET NUM PROCESSES− 1). Furthermore, no process may be displaying
more than one tile.

RETURN VALUE

Returns the index of the tile created.

84

icetAddTile

ERRORS

ICET INVALID VALUE Raised if display rank is not a valid process rank or dis-
play rank is already assigned to another tile. If this error is
raised, nothing is done and -1 is returned.

WARNINGS

None.

BUGS

icetAddTile will let you add tiles of different sizes, but the use of different sized tiles is not
yet supported. The user should try to make sure that all tiles are of the same size.

All processes must specify the same tiles in the same order. IceT will assume this even though
it is not explicitly detected or enforced.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetResetTiles

85

icetBoundingBox

NAME

icetBoundingBoxd, icetBoundingBoxf – set bounds of geometry

SYNOPSIS

#include <GL/ice-t.h>

void icetBoundingBoxd (GLdouble x min,
GLdouble x max,
GLdouble y min,
GLdouble y max,
GLdouble z min,
GLdouble z max);

void icetBoundingBoxf (GLfloat x min,
GLfloat x max,
GLfloat y min,
GLfloat y max,
GLfloat z min,
GLfloat z max);

DESCRIPTION

Establishes the bounds of the geometry as contained in an axis-aligned box with the given extents.

icetBoundingBoxd and icetBoundingBoxf are really just convience functions. They
create an array of the 8 corner vertices and set the bounding vertices appropriately. See
icetBoundingVertices for more information.

ERRORS

None.

WARNINGS

None.

86

icetBoundingBox

BUGS

None known.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetBoundingVertices

87

icetBoundingVertices

NAME

icetBoundingVertices – set bounds of geometry.

SYNOPSIS

#include <GL/ice-t.h>

void icetBoundingVertices(GLint size,
GLenum type,
GLsizei stride,
GLsizei count,
const GLvoid * pointer);

DESCRIPTION

icetBoundingVertices is used to tell IceT what the bounds of the geometry drawn by the
callback registered with icetDrawFunc are. The bounds are assumed to be the convex hull of
the vertices given. The user should take care to make sure that the drawn geometry actually does
fit within the convex hull, or the data may be culled in unexpected ways. IceT runs most efficiently
when the bounds given are tight (match the actual volume of the data well) and when the number
of vertices given is minimal.

The size parameter specifies the number of coordinates given for each vertex. Coordinates
are given in X-Y-Z-W order. Any Y or Z coordinate not given (because size is less than 3) is
assumed to be 0.0, and any W coordinate not given (because size is less than 4) is assumed to be
1.0.

The type parameter specifies in what data type the coordinates are given. Valid types
are ICET SHORT, ICET INT, ICET FLOAT, and ICET DOUBLE, which correspond to types
GLshort, GLint, GLfloat, and GLdouble, respectively.

The stride parameter specifies the offset between consecutive vertices in bytes. If stride
is 0, the array is assumed to be tightly packed.

The count parameter specifies the number of vertices to set.

The pointer parameter is an array of vertices with the first vertex starting at the first byte.

If data replication is being used, each process in a data replication group should register the
same bounding vertices that encompass the entire geometry. By default there is no data replication,
so unless you call icetDataReplicationGroup, all process can have their own bounds.

88

icetBoundingVertices

ERRORS

ICET INVALID VALUE Raised if type is not one of ICET SHORT, ICET INT,
ICET FLOAT, or ICET DOUBLE.

WARNINGS

None.

BUGS

None known.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetDrawFunc, icetBoundingBox, icetDataReplicationGroup

89

icetCompositeOrder

NAME

icetCompositeOrder – specify the order in which images are composited

SYNOPSIS

#include <GL/ice-t.h>

void icetCompositeOrder(const GLint * process ranks);

DESCRIPTION

If ICET ORDERED COMPOSITE is enabled and the current strategy supports ordered composi-
tion, then the order which images are composited are specified with icetCompositeOrder. If
compositing is done with z-buffer comparisons (i.e. the depth buffer is selected as an input with
icetInputOutputBuffers), then the ordering does not matter, and ICET ORDERED COM-
POSITE should probably be disabled. However, if compositing is done with color blending (i.e.
the depth buffer is not selected as in input with icetInputOutputBuffers), then the order
in which the images are composed can drastically change the output.

For ordered image compositing to work, the geometric objects rendered by processes must be
arranged such that if the geometry of one process is “in front” of the geometry of another process
for any camera ray, that ordering holds for all camera rays. It is the application’s responsibility
to ensure that such an ordering exists and to find that ordering. The easiest way to do this is to
ensure that the geometry of each process falls cleanly into regions of an octree, k-d tree, or similar
structure.

Once the geometry order is determined for a particular rendering viewpoint, it is given to IceT
in the form of an array of ranks. The parameter process ranks should have exactly ICET -
NUM PROCESSES entries, each with a unique, valid process rank. The first process should have
the geometry that is “in front” of all others, the next directly behind that, and so on. It should be
noted that the application may actually impose only a partial order on the geometry, but that can
easily be converted to the linear ordering requird by IceT.

When ordering is on, it is accepted that icetCompositeOrder will be called in between
every frame since the order of the geometry may change with the viewpoint.

If data replication is in effect (see icetDataReplicationGroup), all processes are still
expected to be listed in process ranks. Correct ordering can be achieved by ensuring that all
processes in each group are listed in contiguous entries in process ranks.

90

icetCompositeOrder

ERRORS

ICET INVALID VALUE Not every entry in the parameter process ranks was a
unique, valid process rank.

WARNINGS

None.

BUGS

If an ICET INVALID VALUE error is raised, internal arrays pertaining to the ordering of images
may not be restored properly. If such an error is raised, the function should be re-invoked with a
valid ordering before preceding. Unpredictable results may occur otherwise.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetInputOutputBuffers, icetStrategy

91

icetCopyState

NAME

icetCopyState – copy state machine of one context to another.

SYNOPSIS

#include <GL/ice-t.h>

void icetCopyState(IceTContext dest,
IceTContext src);

DESCRIPTION

The icetCopyState function replaces the state of dest with the current state of src. This
function can be used to quickly duplicate a context.

The IceTCommunicator object associated with dest is not changed (nor can it ever
be). Consequently, the following state values are not copied either, since they refer to process
ids that are directly tied to the IceTCommunicator object: ICET RANK, ICET NUM PRO-
CESSES, ICET DATA REPLICATION GROUP, ICET DATA REPLICATION GROUP SIZE,
ICET COMPOSITE ORDER, and ICET PROCESS ORDERS. However, every other state param-
eter is copied.

ERRORS

None.

WARNINGS

None.

BUGS

The state is copied blindly. It is therefore possible to copy states that are invalid for a context’s
communicator. For example, a display rank may not refer to a valid process id.

92

icetCopyState

NOTES

Behavior is undefined if dest or src has never been created or has already been destroyed.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetCreateContext, icetGetContext, icetSetContext

93

icetCreateContext

NAME

icetCreateContext – creates a new context.

SYNOPSIS

#include <GL/ice-t.h>

IceTContext icetCreateContext(IceTCommunicator comm);

DESCRIPTION

The icetCreateContext function creates a new IceT context, makes it current, and returns a
handle to the new context. The handle returned is of type IceTContext. This is an opaque type
that should not be handled directly, but rather simply passed to other IceT functions.

Like OpenGL, the IceT engine behaves like a large state machine. The parameters for engine
operation is held in the current state. The entire state is encapsulated in a context. Each new
context contains its own state.

It is therefore possible to change the entire current state of IceT by simply switch contexts.
Switching contexts is much faster, and often more convenient, than trying to change many state
parameters.

ERRORS

None.

WARNINGS

None.

BUGS

It may be tempting to use contexts to run different IceT operations on separate program threads.
Although certainly possible, great care must be taken. First of all, all threads will share the same
context. Second of all, IceT is not thread safe. Therefore, a multi-threaded program would have
to run all IceT commands in ‘critical sections’ to ensure that the correct context is being used, and
the methods execute safely in general.

94

icetCreateContext

NOTES

icetCreateContext duplicates the communicator comm. Thus, to avoid deadlocks on certain
implementations (such as MPI), the user level program should call icetCreateContext on all
processes with the same comm object at about the same time.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetDestroyContext, icetGetContext, icetSetContext, icetCopyState,
icetGet

95

icetCreateMPICommunicator

NAME

icetCreateMPICommunicator – Converts an MPI communicator to an IceT communicator.

SYNOPSIS

#include <GL/ice-t mpi.h>

IceTCommunicator icetCreateMPICommunicator(
MPI Comm mpi comm);

DESCRIPTION

IceT requires a communicator in order to perform correctly. An application is free to build its
own communicator, but many will simply prefer to use MPI, which is a well established parallel
communication tool. Thus, IceT comes with an implementation of IceTCommunicator that
uses the MPI communication layer underneath.

icetCreateMPICommunicator is used to create an IceTCommunicator that uses the
mpi comm MPI communication object. The resulting IceTCommunicator shares the same
process group and process rank as the original MPI Comm communicator.

mpi comm is duplicated, which has two consiquences. First, all process in mpi comm’s group
may need to call icetCreateMPICommunicator in order for any of them to proceed (de-
pending on the MPI implementation). Second, mpi comm and the resulting IceTCommunica-
tor are decoupled from each other. Communications in one cannot affect another. Also, one
communicator may be destroyed without affecting the other.

RETURN VALUE

An IceTCommunicator with the same process group and rank as mpi comm. The communi-
cator may be destroyed with a call to icetDestroyMPICommunicator.

ERRORS

None.

96

icetCreateMPICommunicator

WARNINGS

None.

BUGS

All MPI errors are ignored.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetDestroyMPICommunicator, icetCreateContext

97

icetDataReplicationGroup

NAME

icetDataReplicationGroup – define data replication.

SYNOPSIS

#include <GL/ice-t.h>

void icetDataReplicationGroup(GLint size,
const GLint * processes);

DESCRIPTION

IceT has the ability to take advantage of geometric data that is replicated among processes. If a
group of processes share the same geometry data, then IceT will split the region of the display that
the data projects onto among the processes, thereby reducing the total amount of image composi-
tion work that needs to be done.

Each group can be declared by calling icetDataReplicationGroup and defining the
group of processes that share the geometry with the local process. size indicates how many
processes belong to the group, and processes is an array of ids of processes that belong to the
group. Each process that belongs to a particular group must call icetDataReplication-
Group with the exact same list of processes in the same order.

You can alternately use icetDataReplicationGroupColor to select data replication
groups.

By default, each process belongs to a group of size one containing just the local processes (i.e.
there is no data replication).

ERRORS

ICET INVALID VALUE processes does not contain the local process rank.

WARNINGS

None.

98

icetDataReplicationGroup

BUGS

IceT assumes that icetDataReplicationGroup is called with the exact same parameters
on all processes belonging to a given group. Likewise, IceT also assumes that all processes have
called icetBoundingVertices or icetBoundingBox with the exact same parameters on
all processes belonging to a given group. These requirements are not strictly enforced, but failing
to do so may cause some of the geometry to not be rendered.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetDataReplicationGroupColor, icetDrawFunc, icetBoundingVertices,
icetBoundingBox

99

icetDataReplicationGroupColor

NAME

icetDataReplicationGroupColor – define data replication.

SYNOPSIS

#include <GL/ice-t.h>

void icetDataReplicationGroupColor(GLint color);

DESCRIPTION

IceT has the ability to take advantage of geometric data that is replicated among processes. If a
group of processes share the same geometry data, then IceT will split the region of the display that
the data projects onto among the processes, thereby reducing the total amount of image composi-
tion work that needs to be done.

Despite the name of the function, icetDataReplicationGroupColor has nothing to
do the color of the data being replicated. Instead, color is used to mark the local process as
part of a given group. When icetDataReplicationGroupColor is called, it finds all other
processes that have the same color and builds a group based on this information.

icetDataReplicationGroupColor must be called on every processes before the func-
tion will return.

ERRORS

None.

WARNINGS

None.

BUGS

IceT assumes that icetDataReplicationGroup is called with the exact same parameters
on all processes belonging to a given group. Likewise, IceT also assumes that all processes have
called icetBoundingVertices or icetBoundingBox with the exact same parameters on
all processes belonging to a given group. These requirements are not strictly enforced, but failing

100

icetDataReplicationGroupColor

to do so may cause some of the geometry to not be rendered.

NOTES

This man page should never be installed. It should just be used to help make other man pages.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetDataReplicationGroup, icetDrawFunc, icetBoundingVertices,
icetBoundingBox

101

icetDestroyContext

NAME

icetDestroyContext – delete a context.

SYNOPSIS

#include <GL/ice-t.h>

void icetDestroyContext(IceTContext context ;

DESCRIPTION

Frees the memory required to hold the state of context and removes context from existence.

ERRORS

None.

WARNINGS

None.

BUGS

icetDestroyContext will happily delete the current context for you, but subsequent calls
to most other IceT functions will probably result in seg-faults unless you make another context
current with icetCreateContext or icetSetContext. The most notable execptions are
the functions with names matching icet*Context, which will work correctly without a proper
current context.

NOTES

Behavior is undefined if context has never been created or has already been destroyed.

102

icetDestroyContext

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetCreateContext

103

icetDestroyMPICommunicator

NAME

icetDestroyMPICommunicator – deletes a MPI communicator

SYNOPSIS

#include <GL/ice-t mpi.h>

void icetDestroyMPICommunicator(IceTCommunicator comm);

DESCRIPTION

Destroys an IceTCommunicator. comm becomes invalid and any memory or MPI resources
held by comm are freed.

Communicators are copied when attached to an IceT context, so destroying an IceTCommu-
nicator used to create a context still in use is safe.

ERRORS

None.

WARNINGS

None.

BUGS

All MPI errors are ignored.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

104

icetDestroyMPICommunicator

SEE ALSO

icetCreateMPICommunicator

105

icetDiagnostics

NAME

icetDiagnostics – change diagnostic reporting level.

SYNOPSIS

#include <GL/ice-t.h>

void icetDiagnostics(GLbitfield mask);

DESCRIPTION

Sets what diagnostic message are printed to standard output. The messages to be printed out are
defined by mask. mask consists of flags that are OR-ed together. The valid flags are:

ICET DIAG OFF A zero flag used to indicate that no diagnostic messages are desired.

ICET DIAG ERRORS Print messages associated with anomalous conditions.

ICET DIAG WARNINGS Print messages associated with conditions that are unexpected or may
lead to errors. Implicitly turns on ICET DIAG ERRORS.

ICET DIAG DEBUG Print frequent messages concerning the status of IceT. Implicitly turns on
ICET DIAG ERRORS and ICET DIAG WARNINGS.

ICET DIAG ROOT NODE Print messages only on the node with a process rank of 0. This is the
default if neither ICET DIAG ROOT NODE nor ICET DIAG ALL NODES is set.

ICET DIAG ALL NODES Print messages all every nodes.

ICET DIAG FULL Turn on all diagnostic messages on all nodes.

The default flags are ICET DIAG ALL NODES | ICET DIAG WARNINGS.

ERRORS

None.

WARNINGS

None.

106

icetDiagnostics

BUGS

None known.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetGetError

107

icetDrawFrame

NAME

icetDrawFrame – renders and composites a frame

SYNOPSIS

#include <GL/ice-t.h>

void icetDrawFrame(void);

DESCRIPTION

Initiates a frame draw using the current OpenGL transformation matrices (modelview and projec-
tion).

IceT may render an image, the tile display needs to be defined (using icetAddTile) and
the drawing function needs to be set (using icetDrawFunc). The composite strategy may also
optionally be set (using icetStrategy).

If ICET DISPLAY is enabled, then the fully composited image is written back to the OpenGL
framebuffer for display. It is the application’s responsibility to synchronize the processes and swap
front and back buffers. If the OpenGL background color is set to something other than black,
ICET DISPLAY COLORED BACKGROUND should also be enabled. Displaying with ICET -
DISPLAY COLORED BACKGROUND disabled may be slightly faster (depending on graphics hard-
ware) but can result in black rectangles in the background. If ICET DISPLAY INFLATE is en-
abled and the size of the renderable window (determined by the current OpenGL viewport) is
greater than that of the tile being displayed, then the image will first be ‘inflated’ to the size of
the actual display. If ICET DISPLAY INFLATE is disabled, the image is drawn at its original
resolution at the lower left corner of the display.

The image remaining in the frame buffer is undefined if ICET DISPLAY is disabled or the
process is not displaying a tile.

ERRORS

ICET INVALID OPERATION Raised if the drawing function has not been set. Also can be
raised if icetDrawFrame is called recursively, probably from
within the drawing callback.

ICET OUT OF MEMORY Not enough memory left to hold intermittent frame buffers and
other temporary data.

108

icetDrawFrame

WARNINGS

None.

BUGS

If compositing with color blending on, the image returned with icetGetColorBuffer may
have values of 〈R,G,B,A〉= 〈0,0,0,0〉 and the rest of the image may be blended with black rather
than the correct background color.

During compositing, image compression is employed that relies on knowing the maximum
possible value in the z-buffer. Unfortunately, different rendering hardware can give different results
for this value. IceT tries to dermine this value up front by clearing the screen and reading the z-
buffer value, but this test sometimes fails, resulting in a classification of background. The side
effects of this are minimal, and IceT usually quickly fixes the problem by continually checking
depth values.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetResetTiles, icetAddTile, icetBoundingBox, icetBoundingVertices,
icetDrawFunc, icetStrategy, icetGetColorBuffer, icetGetDepthBuffer

109

icetDrawFunc

NAME

icetDrawFunc – set a callback for drawing.

SYNOPSIS

#include <GL/ice-t.h>

typedef void (*IceTCallback)(void);

void icetDrawFunc(IceTCallback func);

DESCRIPTION

The icetDrawFunc function sets a callback that is used to draw the geometry from a given
viewpoint.

func should be a function that issues appropriate OpenGL calls to draw geometry in the
current OpenGL context. After func is called, the image left in the back frame buffer will be read
back for compositing.

func should not modify the GL PROJECTION MATRIX as this would cause IceT to place
image data in the wrong location in the tiled display and improperly cull geometry. It is accept-
able to add transformations to GL MODELVIEW MATRIX, but the bounding vertices given with
icetBoundingVertices or icetBoundingBox are assumed to already be transformed by
any such changes to the modelview matrix. Also, GL MODELVIEW MATRIX must be restored
before the draw function returns. Therefore, any changes to GL MODELVIEW MATRIX are to be
done with care and should be surrounded by a pair of glPushMatrix and glPopMatrix functions.

It is also important that func not attempt the change the clear color. In some composting
modes, IceT needs to read, modify, and change the background color. These operations will be
lost if func changes the background color, and severe color blending artifacts may result.

IceT may call func several times from within a call to icetDrawFrame or not at all if the
current bounds lie outside the current viewpoint. This can have a subtle but important impact on
the behavior of func. For example, counting frames by incrementing a frame counter in func is
obviously wrong (although you could count how many times a render occurs). func should also
leave OpenGL in a state such that it will be correct for a subsequent run of func. Any matrices or
attributes pushed in func should be popped before func returns, and any state that is assumed to
be true on entrance to func should also be true on return.

The func function pointer is placed in the ICET DRAW FUNCTION state variable.

110

icetDrawFunc

ERRORS

None.

WARNINGS

None.

BUGS

None known.

NOTES

func is tightly coupled with the bounds set with icetBoundingVertices or icetBound-
ingBox. If the geometry drawn by func is dynamic (changes from frame to frame), then the
bounds may need to be changed as well. Incorrect bounds may cause the geometry to be culled in
surprising ways.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetDrawFrame, icetBoundingVertices, icetBoundingBox

111

icetEnable

NAME

icetEnable, icetDisable– enable/disable an IceT feature.

SYNOPSIS

#include <GL/ice-t.h>

void icetEnable (GLenum pname);
void icetDisable (GLenum pname);

DESCRIPTION

The icetEnable and icetDisable functions turn various IceT features on and off. pname
is a symbolic constant representing the feature to be turned on or off. Valid values for pname are:

ICET CORRECT COLORED BACKGROUND Colored backgrounds are problematic when per-
forming color blended compositing in that the background color will be additively
blended from each image. Enabling this flag will internally cause the color to be reset
to black and then cause the color to be blended back into the resulting images. This flag
is disabled by default.

ICET DISPLAY If enabled, the final, composited image for each tile is written back to the frame
buffer before the return of icetDrawFrame. This flag is enabled by default.

ICET DISPLAY COLORED BACKGROUND If this and ICET DISPLAY are enabled, uses
OpenGL blending to ensure that all background is set to the correct color. This flag is
disabled by default. This option does not affect the images returned from icetGet-
ColorBuffer or icetGetDepthBuffer; it only affects the image in the OpenGL
color buffer.

ICET DISPLAY INFLATE If this and ICET DISPLAY are enabled and the renderable window
is larger then the displayed tile (as determined by the current OpenGL viewport), then
resample the image to fit within the renderable window before writing back to frame
buffer. This flag is disabled by default. This option does not affect the images returned
from icetGetColorBuffer or icetGetDepthBuffer; it only affects the im-
age in the OpenGL color buffer.

ICET DISPLAY INFLATE WITH HARDWARE This option determines how images are inflated.
When enabled (the default), images are inflated by creating a texture and allowing the
hardware the inflate the image. When disabled, images are inflated on the CPU. This
option has no effect unless both ICET DISPLAY and ICET DISPLAY INFLATE are
also enabled.

112

icetEnable

ICET FLOATING VIEWPORT If enabled, the projection will be shifted such that the geometry
will be rendered in one shot whenever possible, even if the geometry straddles up to
four tiles. This flag is enabled by default.

ICET ORDERED COMPOSITE If enabled, the image composition will be performed in the order
specified by the last call to icetCompositeOrder, assuming the current strategy
(specified by a call to icetStrategy) supports ordered composition. Generally, you
want to enable ordered compositing if doing color blending and disable if you are doing
z-buffer comparisons. If enabled, you should call icetCompositeOrder between
each frame to update the image order as camera angles change. This flag is disabled by
default.

ERRORS

ICET INVALID VALUE If pname is not a feature to be enabled or disabled.

WARNINGS

None.

BUGS

The check for a valid pname is not thorough, and thus the ICET INVALID VALUE error may
not always be raised.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetIsEnabled

113

icetGet

NAME

icetGet – get an IceT state parameter

SYNOPSIS

#include <GL/ice-t.h>

void icetGetDoublev (GLenum pname,
GLdouble * params);

void icetGetFloatv (GLenum pname,
GLfloat * params);

void icetGetIntegerv (GLenum pname,
GLint * params);

void icetGetBooleanv (GLenum pname,
GLboolean * params);

void icetGetPointerv (GLenum pname,
GLvoid ** params);

DESCRIPTION

Like OpenGL, the operation of IceT is defined by a large state machine. Also like OpenGL,
the state parameters can be retrieved through the icetGet functions. Each function takes a
symbolic constant, pname, which identifies the state parameter to retrieve. They also each take
an array, params, which will be filled with the values in pname. It is the calling application’s
responsibility to ensure that params is big enough to hold all the data.

STATE PARAMETERS

The following list identifies valid values for pname and a description of the associated state pa-
rameter.

ICET ABSOLUTE FAR DEPTH The maximum possible value in the depth buffer (i.e. the value
in a cleared depth buffer), as stored as an unsigned 32 bit integer. Usually, this is the
expected 0xFFFFFFFF. However, some systems that use buffer values with 24 bits or
less cast the maximum value to something smaller.

ICET BACKGROUND COLOR The color that IceT is currently assuming is the background color.

114

icetGet

It is an RGBA value that is stored as four floating point values. This value is generally
taken from the OpenGL background color on a call to icetDrawFrame, but is also
occasionally set to black to make sure that color blending happens correctly. (The
correct background color is restored later.)

ICET BACKGROUND COLOR WORD The same as ICET BACKGROUND COLOR except that each
component is stored as 8-bit values and packed in a 4-byte integer as specified by
ICET COLOR FORMAT. The idea is to rapidly fill the background of color buffers.
This value is generally taken from the OpenGL background color on a call to
icetDrawFrame, but is also occasionally set to black to make sure that color blend-
ing happens correctly. (The correct background color is restored later.)

ICET BLEND TIME The total time, in seconds, spent in performing color blending of images
during the last call to icetDrawFrame. Stored as a double. An alias for this value is
ICET COMPARE TIME.

ICET BUFFER READ TIME The total time, in seconds, spent reading from OpenGL buffers dur-
ing the last call to icetDrawFrame. Stored as a double.

ICET BUFFER WRITE TIME The total time, in seconds, spent writing to OpenGL buffers during
the last call to icetDrawFrame. Stored as a double.

ICET BYTES SENT The total number of bytes sent by the calling process for transferring image
data during the last call to icetDrawFrame. Stored as an integer.

ICET COLOR BUFFER VALID True if a color buffer was computed during the last call to
icetDrawFrame and is available with a call to icetGetColorBuffer.

ICET COLOR FORMAT The OpenGL symbolic constant describing the format in which IceT
reads and stores color buffers. Currently always set to GL RGBA, GL BGRA, or GL -
BGRA EXT.

ICET COMPARE TIME The total time, in seconds, spent in performing Z comparisons of images
during the last call to icetDrawFrame. Stored as a double. An alias for this value is
ICET BLEND TIME.

ICET COMPOSITE ORDER The order in which images are to be composited if ICET OR-
DERED COMPOSITE is enabled and the current startegy supports ordered compositing.
The parameter contains ICET NUM PROCESSES entries. The value of this parameter
is set with icetCompositeOrder. If the element of index i in the array is set to j,
then there are i images “on top” of the image generated by process j.

ICET COMPOSITE TIME The total time, in seconds, spent in compositing during the last call to
icetDrawFrame. Equal to ICET TOTAL DRAW TIME−ICET RENDER TIME−
ICET BUFFER READ TIME−ICET BUFFER WRITE TIME. Stored as a double.

ICET COMPRESS TIME The total time, in seconds, spent in compressing image data using active
pixel encoding during the last call to icetDrawFrame. Stored as a double.

115

icetGet

ICET DATA REPLICATION GROUP An array of process ids. There are ICET DATA REPLI-
CATION GROUP SIZE entries in the array. IceT assumes that all processes in the list
will create the exact same image with their draw functions (set with icetDrawFunc).
The local process id (ICET RANK) will be part of this list.

ICET DATA REPLICATION GROUP SIZE The length of the ICET DATA REPLICATION -
GROUP array.

ICET DEPTH BUFFER VALID True if a depth buffer was computed during the last call to
icetDrawFrame and is available with a call to icetGetDepthBuffer.

ICET DIAGNOSTIC LEVEL The diagnostics flags set with icetDiagnostics.

ICET DISPLAY NODES An array of process ranks. The size of the array is equal to the number
of tiles (ICET NUM TILES). The ith entry is the rank of the process that is displaying
the tile described by the ith entry in ICET TILE VIEWPORTS.

ICET DRAW FUNCTION A pointer to the drawing callback function, as set by icetDrawFunc.

ICET INPUT BUFFERS A bitmask specifying the the buffers which IceT will read from
OpenGL and perform composition. The value is set with icetInputOutput-
Buffers. See the documentation of that function for valid bit flags.

ICET FRAME COUNT The number of times icetDrawFrame has been called for the current
context.

ICET GEOMETRY BOUNDS An array of vertices whose convex hull bounds the drawn geom-
etry. Set with icetBoundingVertices or icetBoundingBox. Each vertex
has three coordinates and are tightly packed in the array. The size of the array is
3×ICET NUM BOUNDING VERTS.

ICET GLOBAL VIEWPORT Defines a viewport in an infinite logical display that covers all tile
viewports (listed in ICET TILE VIEWPORTS). The viewport, like an OpenGL view-
port, is given as the integer four-tuple 〈x,y,width,height〉. x and y are placed at the
leftmost and lowest position of all the tiles, and width and height are just big enough
for the viewport to cover all tiles. The viewports are listed in the same order as the tiles
were defined with icetAddTile.

ICET NUM BOUNDING VERTS The number of bounding vertices listed in the ICET GEOME-
TRY BOUNDS parameter.

ICET NUM TILES The number of tiles in the defined display. Basically equal to the number of
times icetAddTile was called after the last icetResetTiles.

ICET NUM PROCESSES The number of processes in the parallel job as given by the IceTCom-
municator object associated with the current context.

ICET OUTPUT BUFFERS A bitmask specifying the the buffers which IceT will generate from
composition. The value is set with icetInputOutputBuffers. See the docu-
mentation of that function for valid bit flags.

116

icetGet

ICET PROCESS ORDERS Basically, the inverse of ICET COMPOSITE ORDER. The parameter
contains ICET NUM PROCESSES entries. If the element of index i in the array is set
to j, then there are j images “on top” of the image generated by process i.

ICET RANK The rank of the process as given by the IceTCommunicator object associated
with the current context.

ICET READ BUFFER Set to the OpenGL symbolic constant that IceT will use to read back
buffers. Currently always set to GL BACK.

ICET RENDER TIME The total time, in seconds, spent in the drawing callback during the last
call to icetDrawFrame. Stored as a double.

ICET STRATEGY SUPPORTS ORDERING Is true if and only if the current strategy supports
ordered compositing.

ICET TILE DISPLAYED The index of the tile the local process is displaying. The index will
correspond to the tile entry in the ICET DISPLAY NODES and ICET TILE VIEW-
PORTS arrays. If set to 0 <= i < ICET NUM PROCESSES, then the ith entry of
ICET DISPLAY NODES is equal to ICET RANK. If the local process is not displaying
any tile, then ICET TILE DISPLAYED is set to −1.

ICET TILE MAX HEIGHT The maximum height of any tile.

ICET TILE MAX PIXELS The maximum number of pixels in any tile. This num-
ber is actually set to (ICET TILE MAX WIDTH × ICET TILE MAX HEIGHT) +
ICET NUM PROCESSES. The number of processes is added to provide sufficient
padding such that the max tile image may be divided evenly amongst any group of
processes without dropping any real pixels.

ICET TILE MAX WIDTH The maximum width of any tile.

ICET TILE VIEWPORTS A list of viewports in the logical global display defining the tiles. Each
viewport is the four-tuple 〈x,y,width,height〉 defining the position and dimensions of
a tile in pixels, much like a viewport is defined in OpenGL. The size of the array is
4∗ICET NUM TILES.

ICET TOTAL DRAW TIME Time spent in the last call to icetDrawFrame. Stored as a double.

ERRORS

ICET BAD CAST The state parameter requested is of a type that cannot be cast to
the output type.

ICET INVALID ENUM pname is not a valid state parameter.

117

icetGet

WARNINGS

None.

BUGS

None known.

NOTES

Not every state variable is documented here. There is a set of parameters used internally by IceT
or are more appropriately retrieved with other functions such as icetIsEnabled.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetIsEnabled, icetGetStrategyName

118

icetGetColorBuffer

NAME

icetGetColorBuffer, icetGetDepthBuffer– retrieves the last computed color or depth
buffer.

SYNOPSIS

#include <GL/ice-t.h>

GLubyte *icetGetColorBuffer (void);
GLuint *icetGetDepthBuffer (void);

DESCRIPTION

Returns a buffer containing the result of the image composition performed by the last call
to icetDrawFrame. Be aware that a color or depth buffer may not have been computed
with the last call to icetDrawFrame. IceT avoids the computation and network transfers
for any unnecessary buffers unless specifically requested otherwise with the flags given to the
icetInputOutputBuffers function. Use a call to icetGetBooleanv with a value of
ICET COLOR BUFFER VALID or ICET DEPTH BUFFER VALID to determine whether either
of these buffers are available. Attempting to get a nonexistent buffer will result with a warning
being emitted and NULL returned.

RETURN VALUE

icetGetColorBuffer returns the color buffer for the displayed tile. Each pixel value can be
assumed to be four consecutive bytes in the buffer. The pixels are also always aligned on 4-byte
boundaries. The format of the color buffer is defined by the state parameter ICET COLOR -
FORMAT, which is typically either GL RGBA, GL BGRA, or GL BGRA EXT.

icetGetDepthBuffer returns the depth buffer for the displayed tile. Depth values are
stored as 32-bit integers.

The width and the height of the buffer are determined by the width and the height of the dis-
played tile at the time icetDrawFrame was called. If the tile layout is changed since the last call
to icetDrawFrame, the dimensions of the buffer returned may not agree with the dimensions
stored in the current IceT state.

The memory returned by icetGetColorBuffer and icetGetDepthBuffer need not,
and should not, be freed. It will be reclaimed in the next call to icetDrawFrame. Expect the
data returned to be obliterated on the next call to icetDrawFrame.

119

icetGetColorBuffer

ERRORS

None.

WARNINGS

ICET INVALID VALUE The appropriate buffer is not available, either because it was
not computed or it has been obliterated by a subsequent IceT
computation.

BUGS

The returned image may have a value of (R,G,B,A) = (0,0,0,0) for a pixel instead of the true
background color. This can usually be corrected by replacing all pixels with an alpha value of 0
with the background color.

The buffers are stored in a shared memory pool attached to a particular context. As such, the
buffers are not copied with the state. Also, because they are shared, it is conceivable that the
buffers will be reclaimed before the next call to icetDrawFrame. If this should happen, the
ICET COLOR BUFFER VALID and ICET DEPTH BUFFER VALID state variables will be set
accordingly.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetDrawFrame, icetInputOutputBuffers, icetGet

120

icetGetContext

NAME

icetGetContext – retrieves the current context

SYNOPSIS

#include <GL/ice-t.h>

IceTContext icetGetContext(void);

DESCRIPTION

The icetGetContext function retrieves the handle for the current context. This handle may
be stored and set for later use with icetSetContext (assuming the context has not been since
destroyed).

RETURN VALUE

A handle for the current context.

ERRORS

None.

WARNINGS

None.

BUGS

None known.

COPYRIGHT

Copyright c©2003 Sandia Corporation

121

icetGetContext

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetSetContext, icetCreateContext, icetDestroyContext, icetCopyState

122

icetGetError

NAME

icetGetError – return the last error condition.

SYNOPSIS

#include <GL/ice-t.h>

GLenum icetGetError(void);

DESCRIPTION

Retrieves the first error or warning condition that occurred since the last call to icetGetError
or since program startup, whichever happened last.

Once an error condition has been retrieved with icetGetError, the error condition is reset
to no error and cannot be retrieved again.

RETURN VALUE

One of the following flags will be returned:

ICET INVALID VALUE An inappropriate value has been passed to a function.

ICET INVALID OPERATION An inappropriate function has been called.

ICET OUT OF MEMORY IceT has ran out of memory for buffer space.

ICET BAD CAST A function has been passed a value of the wrong type.

ICET INVALID ENUM A function has been passed an invalid constant.

ICET SANITY CHECK FAIL An internal error (or warning) has occurred.

ICET NO ERROR No error has been raised since the last call to icetGetError.

BUGS

It is not possible to tell if the returned value was caused by an error or a warning.

123

icetGetError

NOTES

The error value is not context dependent.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetDiagnostics

124

icetGetStrategyName

NAME

icetGetStrategyName – retrieve strategy name.

SYNOPSIS

#include <GL/ice-t.h>

const GLubyte icetGetStrategyName(void);

DESCRIPTION

icetGetStrategyName retrieves a human readable name for the current strategy.

RETURN VALUE

Returns a short, null terminated string identifying the strategy currently in effect. Helpful for
printing out debugging or diagnostic statements. If no strategy is set, NULL is returned.

ERRORS

None.

WARNINGS

None.

BUGS

None known.

NOTES

The string returned does not contain the identifier used in a C program. For example, if the cur-
rent strategy is ICET STRATEGY REDUCE, icetGetStrategyName returns “Reduce,” not
“ICET STRATEGY REDUCE.”

125

icetGetStrategyName

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetStrategy

126

icetInputOutputBuffers

NAME

icetInputOutputBuffers – set IceT composition mode.

SYNOPSIS

#include <GL/ice-t.h>

void icetInputOutputBuffers(GLenum inputs,
GLenum outputs);

DESCRIPTION

icetInputOutputBuffers sets what OpenGL frame buffers IceT reads and generates. Dur-
ing a call to icetDrawFrame, IceT reads the input buffers directly from OpenGL after it per-
forms a callback to the draw function (set by icetDrawFunc). Output buffers are stored inter-
nally after the call to icetDrawFrame finishes. The output buffers can be retrieved with calls to
the icetGetColorBuffer and icetGetDepthBuffer functions. In addition, if the color
buffer output is on and ICET DISPLAY is enabled, the color buffer is also written back to the
OpenGL frame buffer before icetDrawFrame returns.

Both inputs and outputs are or’ed values of one or more of the following flags:

ICET COLOR BUFFER BIT Reads/generates color data. Color data is stored in RGBA or BGRA
format. Each channel is 8-bits, resulting in a 32-bit word when combined together. Each 32-
bit color value is always aligned on 32-bit word boundaries for faster computation.

ICET DEPTH BUFFER BIT Reads/generates depth data. Depth data is stored as 32-bit unsigned
integers.

The current values of the input and output buffers are stored in the ICET INPUT BUFFERS
and ICET OUTPUT BUFFERS state variables. By default, the ICET INPUT BUFFERS value
is set to (ICET COLOR BUFFER BIT|ICET DEPTH BUFFER BIT), and the ICET OUTPUT -
BUFFERS value is set to ICET COLOR BUFFER BIT.

The composition operator IceT uses is defined by the inputs. If the depth buffer is an input,
then Z comparison is performed. If the depth buffer is not an input, alpha blending is performed.
Note that in the latter case, order of composition may matter and therefore not all composition
strategies will work.

127

icetInputOutputBuffers

ERRORS

ICET INVALID VALUE An output was selected that is not also an input or no outputs
were selected at all.

WARNINGS

None.

BUGS

Blending of colors cannot be used in conjunction with depth testing. Even with depth testing, the
order of operation for color blending is important, so such a combination is not likely to be useful.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetGetColorBuffer, icetGetDepthBuffer, icetDrawFrame

128

icetIsEnabled

NAME

icetIsEnabled – query enabled status of an IceT feature.

SYNOPSIS

#include <GL/ice-t.h>

GLboolean icetIsEnabled(GLenum pname);

RETURN VALUE

Returns ICET TRUE if the feature associated with pname is enabled, ICET FALSE (= 0) if the
feature is disabled.

ERRORS

ICET INVALID VALUE If pname is not a feature to be enabled or disabled.

WARNINGS

None.

BUGS

The check for a valid pname is not thorough, and thus the ICET INVALID VALUE error may
not always be raised.

NOTES

A list of valid values for pname is given in the documentation for icetEnable.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of

129

icetIsEnabled

this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetEnable

130

icetResetTiles

NAME

icetResetTiles – clears out all tile definitions.

SYNOPSIS

#include <GL/ice-t.h>

void icetResetTiles(void)

DESCRIPTION

IceT defines its display as a set of tiles. icetResetTiles will empty this set. The set of tiles is
filled again with calls to icetAddTile.

As a side effect, icetResetTiles will also zero out the renderable window size. The size
will be reset with calls to icetAddTile.

ERRORS

None.

WARNINGS

None.

BUGS

None known.

NOTES

As a rule, a call to icetResetTiles should always be followed with one or more calls to
icetAddTile. icetDrawFrame will not work properly if no tiles are in existence.

131

icetResetTiles

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetAddTile

132

icetSetContext

NAME

icetSetContext – changes the current context.

SYNOPSIS

#include <GL/ice-t.h>

void icetSetContext(IceTContext context);

DESCRIPTION

The icetSetContext function sets the IceT state machine to work with the context defined by
context and the state associated with it. Further calls to IceT functions will operate based on
the state encapsulated in context. Changing the state of the context is a fast operation.

ERRORS

ICET INVALID VALUE context is not valid.

WARNINGS

None.

BUGS

None known.

NOTES

The behavior of icetSetContext is somewhat indeterminate if context is not valid. Usually,
an ICET INVALID VALUE error will be raised, but it is possible that the context will be set to
some other context. Under any circumstances, a valid context will be current when this function
returns.

133

icetSetContext

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetGetContext, icetCreateContext, icetCopyState

134

icetStrategy

NAME

icetStrategy – set the strategy used to composite images.

SYNOPSIS

#include <GL/ice-t.h>

void icetStrategy(IceTStrategy strategy);

DESCRIPTION

The IceT API comes packaged with several algorithms for compositing images. The algorithm to
use is determined by selecting a strategy. The strategy is selected with icetStrategy. A
strategy must be selected before icetDrawFrame is called.

The strategy is of type IceTStrategy. This is an opaque type. There are no conventions
to create or change an IceTStrategy, but there are several predefined strategies to select from.
They are:

ICET STRATEGY SERIAL Basically applies a “traditional” single tile composition (such as bi-
nary swap) to each tile in the order they were defined. Because each process must take
part in the composition of each tile regardless of whether they draw into it, this strategy
is usually very inefficient when compositing for more than tile. It is provided mostly
for comparative purposes.

ICET STRATEGY DIRECT As each process renders an image for a tile, that image is sent di-
rectly to the process that will display that tile. This usually results in a few processes
receiving and processing the majority of the data, and is therefore usually an inefficient
strategy.

ICET STRATEGY SPLIT Like ICET STRATEGY DIRECT, except that the tiles are split up,
and each process is assigned a piece of a tile in such a way that each process receives
and handles about the same amount of data. This strategy is often very efficient, but
due to the large amount of messages passed, it has not proven to be very scalable or
robust.

ICET STRATEGY REDUCE A two phase algorithm. In the first phase, tile images are redis-
tributed such that each process has one image for one tile. In the second phase, a “tra-
ditional” single tile composition is performed for each tile. Since each process contains
an image for only one tile, all these compositions may happen simultaneously. This is
a well rounded strategy that seems to perform well in a wide variety of applications.

135

icetStrategy

ICET STRATEGY VTREE An extension to the binary tree algorithm for image composition. Sets
up a ‘virtual’ composition tree for each tile image. Processes that belong to multiple
trees (because they render to more than one tile) are allowed to float between trees. This
strategy is not quite as well load balanced as ICET STRATEGY REDUCE or ICET -
STRATEGY SPLIT, but has very well behaved network communication.

Not all of the strategies support ordered image composition. ICET STRATEGY SERIAL,
ICET STRATEGY DIRECT, and ICET STRATEGY REDUCE do support ordered image compo-
sition. ICET STRATEGY SPLIT and ICET STRATEGY VTREE do not support ordered image
composition and will ignore ICET ORDERED COMPOSITE if it is enabled.

ERRORS

None.

WARNINGS

None.

BUGS

Use the ICET STRATEGY SPLIT strategy with care. It has proven to be unreliable on several
high-speed interconnects. Avoid using it at all in a production application.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetDrawFrame, icetGetStrategyName

136

icetWallTime

NAME

icetWallTime – timer function

SYNOPSIS

#include <GL/ice-t.h>

double icetWallTime(void)

DESCRIPTION

Retrieves the current time, in seconds. The returned values of icetWallTime are only valid in
relation to each other. That is, the time may or may not have anything to do with the current date
or time. However, the difference of values between two calls to icetWallTime is the elapsed
time in seconds between the two calls. Thus, icetWallTime is handy for determining the run-
ning time of various subprocesses. icetWallTime is used internally for determining the values
for the state variables ICET BUFFER READ TIME, ICET BUFFER WRITE TIME, ICET COM-
PARE TIME, ICET COMPOSITE TIME, ICET COMPRESS TIME, ICET RENDER TIME, and
ICET TOTAL DRAW TIME.

RETURN VALUE

The current time, in seconds.

ERRORS

ICET INVALID VALUE You’ve screwed up something a little bit.

ICET INVALID OPERATION You’ve screwed something up a lot.

ICET OUT OF MEMORY You need a better computer to do what you want to do.

ICET BAD CAST The argument is of the wrong format.

ICET INVALID ENUM One of us does not know what he is talking about.

ICET SANITY CHECK FAIL I’ve screwed something up a lot.

137

icetWallTime

WARNINGS

None.

BUGS

None known.

NOTES

This man page should never be installed. It should just be used to help make other man pages.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of
this work by or on behalf of the U.S. Government. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that this Notice and any statement of
authorship are reproduced on all copies.

SEE ALSO

icetGet

138

Index

α, 41

active-pixel encoding, 45–46, 64, 66, 75
alpha, 41
alpha blending, 37

background color, 42–43
binary swap composite, 52–54
binary tree composite, 51–52
blending, see compositing, blended

callback, see drawing callback
clear color, see background color
CMake, 15, 16
CMakeLists.txt, 16
common.h, 67, 70, 71
communicator, 18
compositing, 39–43

binary swap, 52–54
blended, 40–43
ordered, 41–42, 54
single image, 49–54
tree, 51–52
z-buffer, 39–40

compositing operation, 39–43, 51
content

current, 28
context

IceT, 18, 27–29, 77, 78, 94
OpenGL, 18
OpenGL, 33

context.h, 63, 67

data replication, 46–47
debug, 30
depth buffer, see compositing, z-buffer
diagnostics, 30
DirectX, 81
direct send strategy, see strategy, direct send
display definition, 30–33
display process, 11, 19, 20, 32, 33, 37
drawing callback, 19, 20, 34–36

error, 30

FindIceT.cmake, 16
floating viewport, 44–45
free, 63

GL/ice-t.h, 17, 27, 60, 61, 78
GL/ice-t mpi.h, 17, 27, 77, 78
GL BACK, 117
GL BGRA, 115, 119
GL BGRA EXT, 115, 119
GL MODELVIEW MATRIX, 35, 36, 110
GL PROJECTION MATRIX, 35, 36, 110
GL RGBA, 115, 119
glClearColor, 42
global display, 31
GLUT, 17, 18
glViewport, 43, 84

ice-t.h, 17, 27, 60, 61, 78
ice-t mpi.h, 17, 27, 77, 78
icet (library), 16
ICET ABSOLUTE FAR DEPTH, 114
ICET ALL CONTAINED TILES MASKS, 61
ICET BACKGROUND COLOR, 114, 115
ICET BACKGROUND COLOR WORD, 115
ICET BAD CAST, 123
ICET BLEND TIME, 48, 115
ICET BOOLEAN, 69
ICET BUFFER READ TIME, 47, 48, 115, 137
ICET BUFFER WRITE TIME, 48, 115, 137
ICET BYTE, 69
ICET BYTES SENT, 48, 67, 82, 115
ICET COLOR BUFFER BIT, 37, 127
ICET COLOR BUFFER VALID, 37, 115, 119,

120
ICET COLOR FORMAT, 115, 119
ICET COMM ALLGATHER, 68
ICET COMM DESTROY, 67
ICET COMM DUPLICATE, 67
ICET COMM IRECV, 68
ICET COMM ISEND, 68

139

ICET COMM RANK, 69
ICET COMM RECV, 68, 69
ICET COMM SEND, 67, 69
ICET COMM SENDRECV, 68
ICET COMM SIZE, 68
ICET COMM WAIT, 68
ICET COMM WAITANY, 68
ICET COMPARE TIME, 48, 115, 137
ICET COMPOSITE ORDER, 92, 115, 117
ICET COMPOSITE TIME, 48, 115, 137
ICET COMPRESS TIME, 48, 115, 137
ICET CONTAINED TILES, 70
ICET CONTAINED TILES LIST, 62
ICET CONTAINED TILES MASK, 61, 62
ICET CONTAINED VIEWPORT, 62
ICET CONTAINED VIEWPORTS, 62
ICET CORRECT COLORED BACK-

GROUND, 42, 43, 112
ICET DATA REPLICATION GROUP, 47, 92,

116
ICET DATA REPLICATION GROUP SIZE,

47, 92, 116
ICET DEPTH BUFFER BIT, 37, 127
ICET DEPTH BUFFER VALID, 37, 116, 119,

120
ICET DIAG ALL NODES, 30, 106
ICET DIAG DEBUG, 30, 106
ICET DIAG ERRORS, 30, 106
ICET DIAG FULL, 30, 106
ICET DIAG OFF, 30, 106
ICET DIAG ROOT NODE, 30, 106
ICET DIAG WARNINGS, 30, 106
ICET DIAGNOSTIC LEVEL, 30, 116
ICET DISPLAY, 36, 43, 108, 112, 127
ICET DISPLAY COLORED BACK-

GROUND, 36, 42, 43, 108, 112
ICET DISPLAY INFLATE, 36, 43, 44, 108,

112
ICET DISPLAY INFLATE WITH HARD-

WARE, 43, 112
ICET DISPLAY NODES, 33, 116, 117
ICET DOUBLE, 69, 88, 89
ICET DRAW FUNCTION, 110, 116
ICET FALSE, 129
ICET FAR DEPTH, 62

ICET FLOAT, 69, 88, 89
ICET FLOATING VIEWPORT, 45, 113
ICET FRAME COUNT, 48, 116
ICET GEOMETRY BOUNDS, 116
ICET GLOBAL VIEWPORT, 33, 116
ICET INPUT BUFFERS, 65, 116, 127
ICET INT, 69, 88, 89
ICET INVALID ENUM, 123
ICET INVALID OPERATION, 123
ICET INVALID VALUE, 113, 123
ICET IS DRAWING FRAME, 62
ICET MAX PIXELS, 70
icet mpi (library), 16, 77, 78
ICET NEAR DEPTH, 62
ICET NO ERROR, 123
ICET NUM BOUNDING VERTS, 116
ICET NUM CONTAINED TILES, 62
ICET NUM PROCESSES, 61, 84, 90, 92, 115–

117
ICET NUM TILES, 33, 61, 62, 116, 117
ICET ORDERED COMPOSITE, 41, 42, 90,

113, 115, 136
ICET OUT OF MEMORY, 123
ICET OUTPUT BUFFERS, 116, 127
ICET PROCESS ORDERS, 92, 117
ICET PROJECTION MATRIX, 62
ICET RANK, 47, 92, 116, 117
ICET READ BUFFER, 117
ICET RENDER TIME, 47, 48, 115, 117, 137
ICET SANITY CHECK FAIL, 123
ICET SHORT, 69, 88, 89
icet strategies (library), 16
ICET STRATEGY DIRECT, 34, 59, 61, 135,

136
ICET STRATEGY EXPORT, 61
ICET STRATEGY REDUCE, 34, 54, 125, 135,

136
ICET STRATEGY SERIAL, 34, 57, 135, 136
ICET STRATEGY SPLIT, 34, 56, 135, 136
ICET STRATEGY SUPPORTS ORDERING,

42, 117
ICET STRATEGY VTREE, 34, 57, 136
ICET TILE CONTRIB COUNTS, 62
ICET TILE DISPLAYED, 33, 117
ICET TILE MAX HEIGHT, 33, 117

140

ICET TILE MAX PIXELS, 33, 117
ICET TILE MAX WIDTH, 33, 117
ICET TILE VIEWPORTS, 33, 116, 117
ICET TOTAL DRAW TIME, 48, 115, 117, 137
ICET TOTAL IMAGE COUNT, 62
ICET TRUE, 129
icetAddSentBytes, 67, 69
icetAddTile, 18, 19, 31–33, 43, 84–85, 108, 116,

131
icetBoundingBox, 19, 35, 62, 86–87, 99, 100,

110, 111, 116
icetBoundingVertices, 35, 62, 86, 88–89, 99,

100, 110, 111, 116
icetBswapCompose, 73
IceTCallback, 35, 110
icetClearImage, 65
IceTCommRequest, 68
IceTCommunicator, 18, 27, 28, 77–79, 92, 94,

96, 104, 116, 117
IceTCommunicatorStruct, 67
icetComposite, 75
icetCompositeOrder, 42, 90–91, 113, 115
icetCompressedComposite, 75
icetCompressedSubComposite, 75
icetCompressImage, 66, 69
icetCompressSubImage, 66, 67
ICETConfig.cmake, 16
IceTContext, 18, 27–29, 92, 94, 102, 121, 133
icetCopyState, 29, 43, 92–93
icetCreateContext, 18, 27, 43, 77, 78, 94–95,

102
icetCreateMPICommunicator, 18, 28, 77, 78,

96–97
icetDataReplicationGroup, 47, 88, 90, 98–99,

100
icetDataReplicationGroupColor, 47, 98, 100–

101
icetDecompressImage, 67
icetDestroyContext, 27, 78, 102–103
icetDestroyMPICommunicator, 28, 77, 78, 96,

104–105
icetDiagnostics, 30, 106–107, 116
icetDisable, 29, 44, 112–113
icetDrawFrame, 20, 36, 37, 42, 47, 48, 61, 62,

108–109, 110, 112, 115–117, 119, 120,

127, 131, 135
icetDrawFunc, 35, 88, 108, 110–111, 116, 127
icetEnable, 29, 41, 112–113, 129
icetFullImageSize, 64, 66, 69, 70
IceTGenerateData, 70
icetGet, 29, 30, 33, 47, 61, 63, 114–118, 119
icetGetColorBuffer, 37, 42, 43, 109, 112, 115,

119–120, 127
icetGetCompressedTileImage, 66
icetGetContext, 28, 121–122
icetGetDepthBuffer, 37, 43, 112, 116, 119–120,

127
icetGetError, 123–124
icetGetImageColorBuffer, 65
icetGetImageDepthBuffer, 65
icetGetImagePixelCount, 65, 67, 69
icetGetStrategyName, 49, 61, 125–126
icetGetTileImage, 66
IceTHandleData, 70
IceTImage, 61, 64–67, 69–71, 73, 75
icetInitializeImage, 65
icetInputOutputBuffers, 37, 40, 90, 116, 119,

127–128
icetIsEnabled, 29, 118, 129–130
icetRenderTransferFullImages, 70
icetReserveBufferMem, 63–65, 69
icetResetTiles, 18, 31, 84, 116, 131–132
icetResizeBuffer, 63–65, 69
icetSendRecvLargeMessages, 70
icetSetContext, 28, 43, 102, 121, 133–134
IceTSparseImage, 64–67, 69–71, 73, 75
icetSparseImageSize, 64–66, 69, 70
IceTStrategy, 33, 49, 60, 61, 135
icetStrategy, 19, 33, 42, 49, 54, 56, 57, 59, 61,

108, 113, 135–136
icetTreeCompose, 71, 73
icetUnsafeStateGet, 62, 63
icetWallTime, 137–138
image.h, 64, 70
image inflation, 29, 33, 43–44

libicet.a, 16
logical global display, 31

malloc, 63

141

memory pool, 63
Mesa 3D, 15
MPI, 15, 17, 67, 77, 78, 80
MPI Comm, 28, 77, 96
MPI Init, 18
MPICH, 15
mullion, 32

non-display process, 31

OpenGL, 15, 17, 18, 20, 27, 36, 81, 94, 108,
110, 112, 114, 115, 139

ordered compositing, see compositing, ordered
over operator, 41

pool
memory, 63

pre-multiplied color, 41

rank, 18
reduce strategy, see strategy, reduce
reduce to single tile, see strategy, reduce
rendering callback, see drawing callback
root process, 19, 30

serial strategy, see strategy, serial
single-tile rendering, 11, 18, 32, 33
single image composite, 49–54
single image composite network, 51
sort-first, 12
sort-last, 12, 39, 43
sort-middle, 12
spatial decomposition, 11
split strategy, see strategy, split
state, 18, 27–29
state.h, 62
strategy, 19, 33–34, 49–75

direct, 34
direct send, 59–60
reduce, 19, 34, 54–56, 81
serial, 34, 57–59, 72, 73
split, 34, 56–57
virtual trees, 34, 57

tile definition, 30–33
tile split and delegate, see strategy, split
timing, 47–48

tree composite, 51–52

under operator, 41

virtual trees, see strategy, virtual trees
visibility ordering, 41
volume rendering, 39–43

warning, 30

z-buffer, 39, see also compositing, z-buffer
Z comparison, 37

142

DISTRIBUTION:

3 Berk Geveci
Kitware, Inc.
28 Corporate Drive
Clifton Park, NY 12065

8 MS 1323 Kenneth Moreland, 1424
1 MS 0899 Technical Library, 9536 (electronic)

143

144

v1.28

	Introduction
	A Parallel Rendering Primer

	Tutorial
	Building IceT
	Linking to IceT Libraries
	Creating IceT Enabled Applications

	Basic Usage
	The State Machine
	Diagnostics
	Display Definition
	Strategies
	Drawing Callback
	Rendering

	Customizing Compositing
	Compositing Operation
	Z-Buffer Compositing
	Volume Rendering (and Other Transparent Objects)

	Image Inflation
	Floating Viewport
	Active-Pixel Encoding
	Data Replication
	Timing (and Other Metrics)

	Strategies
	Single Image Compositing
	Tree Compositing
	Binary-Swap Compositing
	Ordered Compositing

	Reduce Strategy
	Split Strategy
	Virtual Trees Strategy
	Serial Strategy
	Direct Send Strategy
	Implementing New Strategies
	Internal State Variables for Compositing
	Memory Management
	Image Manipulation Functions
	Creating Images
	Querying Images
	Rendering Images
	Compressing Images

	Communications
	Transferring Images
	Helper Communication Functions

	Internal Functions for Compositing
	Parallel Compositing
	Local Compositing

	Communicators
	MPI Communicators
	User Defined Communicators

	Future Work
	Man Pages
	icetAddTile
	icetBoundingBox
	icetBoundingVertices
	icetCompositeOrder
	icetCopyState
	icetCreateContext
	icetCreateMPICommunicator
	icetDataReplicationGroup
	icetDataReplicationGroupColor
	icetDestroyContext
	icetDestroyMPICommunicator
	icetDiagnostics
	icetDrawFrame
	icetDrawFunc
	icetEnable
	icetGet
	icetGetColorBuffer
	icetGetContext
	icetGetError
	icetGetStrategyName
	icetInputOutputBuffers
	icetIsEnabled
	icetResetTiles
	icetSetContext
	icetStrategy
	icetWallTime

	Index

